{"title":"On the targets of inference with multivariate failure time data.","authors":"Ross L Prentice","doi":"10.1007/s10985-022-09558-4","DOIUrl":null,"url":null,"abstract":"<p><p>There are several different topics that can be addressed with multivariate failure time regression data. Data analysis methods are needed that are suited to each such topic. Specifically, marginal hazard rate models are well suited to the analysis of exposures or treatments in relation to individual failure time outcomes, when failure time dependencies are themselves of little or no interest. On the other hand semiparametric copula models are well suited to analyses where interest focuses primarily on the magnitude of dependencies between failure times. These models overlap with frailty models, that seem best suited to exploring the details of failure time clustering. Recently proposed multivariate marginal hazard methods, on the other hand, are well suited to the exploration of exposures or treatments in relation to single, pairwise, and higher dimensional hazard rates. Here these methods will be briefly described, and the final method will be illustrated using the Women's Health Initiative hormone therapy trial data.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09558-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
There are several different topics that can be addressed with multivariate failure time regression data. Data analysis methods are needed that are suited to each such topic. Specifically, marginal hazard rate models are well suited to the analysis of exposures or treatments in relation to individual failure time outcomes, when failure time dependencies are themselves of little or no interest. On the other hand semiparametric copula models are well suited to analyses where interest focuses primarily on the magnitude of dependencies between failure times. These models overlap with frailty models, that seem best suited to exploring the details of failure time clustering. Recently proposed multivariate marginal hazard methods, on the other hand, are well suited to the exploration of exposures or treatments in relation to single, pairwise, and higher dimensional hazard rates. Here these methods will be briefly described, and the final method will be illustrated using the Women's Health Initiative hormone therapy trial data.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.