Maryam Mobed-Miremadi, Erik Acks, Sutthipong Polsaward, Ding Chen
{"title":"High throughput miniaturization of artificial cells.","authors":"Maryam Mobed-Miremadi, Erik Acks, Sutthipong Polsaward, Ding Chen","doi":"10.3109/10731199.2011.574637","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, inkjet bio-printing has been used to produce miniaturized alginate microcapsules. A parametric study using subsequent Taguchi L(18) (3(1) × 2(7)) and L(16) (4(5)) designs was performed to elucidate the effect of inkjet parameters on microcapsule size. A 120-minute pilot run using the optimal waveform parameters and 0.5% alginate ink yielded a throughput of 1.8×10(6) microcapsules/hr, averaging 40 μm in diameter. Real-time stable jetting conditions were confirmed visually by the generation of a single droplet with a straight trajectory and non-fluctuating Ohnesorge numbers. The rate of stirring of the cross-linking CaCl(2) solution determined scaffold vs. single vesicle formation.</p>","PeriodicalId":8413,"journal":{"name":"Artificial cells, blood substitutes, and immobilization biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10731199.2011.574637","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial cells, blood substitutes, and immobilization biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10731199.2011.574637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/5/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this study, inkjet bio-printing has been used to produce miniaturized alginate microcapsules. A parametric study using subsequent Taguchi L(18) (3(1) × 2(7)) and L(16) (4(5)) designs was performed to elucidate the effect of inkjet parameters on microcapsule size. A 120-minute pilot run using the optimal waveform parameters and 0.5% alginate ink yielded a throughput of 1.8×10(6) microcapsules/hr, averaging 40 μm in diameter. Real-time stable jetting conditions were confirmed visually by the generation of a single droplet with a straight trajectory and non-fluctuating Ohnesorge numbers. The rate of stirring of the cross-linking CaCl(2) solution determined scaffold vs. single vesicle formation.