Configural Analysis in Component Space.

Q2 Psychology
Journal for Person-Oriented Research Pub Date : 2022-06-09 eCollection Date: 2022-01-01 DOI:10.17505/jpor.2022.24217
Alexander von Eye, Wolfgang Wiedermann
{"title":"Configural Analysis in Component Space.","authors":"Alexander von Eye,&nbsp;Wolfgang Wiedermann","doi":"10.17505/jpor.2022.24217","DOIUrl":null,"url":null,"abstract":"<p><p>Unless very large samples are available, the number of variables and variable categories that can be simultaneously used in categorical data analysis is small when models are estimated. In this article, an approach is proposed that can help remedy this problem. Specifically, it is proposed to perform, in a first step, principal component analysis or factor analysis. These methods help reduce the dimensionality of the data space without loss of important information. In a second step, sectors are created in the component or factor space. These sectors can, in a third step, be subjected to Configural Frequency analysis (CFA). CFA identifies those sectors that contradict a priori-specified hypotheses. It is also proposed to take into account the ordinal nature of the sectors. In addition, distributional assumptions can be considered. This is illustrated in data examples. Possible extensions of the proposed approach are discussed.</p>","PeriodicalId":36744,"journal":{"name":"Journal for Person-Oriented Research","volume":"8 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Person-Oriented Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17505/jpor.2022.24217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

Abstract

Unless very large samples are available, the number of variables and variable categories that can be simultaneously used in categorical data analysis is small when models are estimated. In this article, an approach is proposed that can help remedy this problem. Specifically, it is proposed to perform, in a first step, principal component analysis or factor analysis. These methods help reduce the dimensionality of the data space without loss of important information. In a second step, sectors are created in the component or factor space. These sectors can, in a third step, be subjected to Configural Frequency analysis (CFA). CFA identifies those sectors that contradict a priori-specified hypotheses. It is also proposed to take into account the ordinal nature of the sectors. In addition, distributional assumptions can be considered. This is illustrated in data examples. Possible extensions of the proposed approach are discussed.

Abstract Image

Abstract Image

Abstract Image

构件空间的构形分析。
除非有非常大的样本,否则在估计模型时,可以同时用于分类数据分析的变量和变量类别的数量很少。在本文中,提出了一种可以帮助解决这个问题的方法。具体来说,建议在第一步进行主成分分析或因子分析。这些方法有助于在不丢失重要信息的情况下降低数据空间的维数。第二步,在成分或要素空间中创建扇区。在第三步中,这些扇区可以进行配置频率分析(CFA)。CFA识别那些与优先级指定的假设相矛盾的部门。还建议考虑到各部门的顺序性质。此外,还可以考虑分布假设。数据示例说明了这一点。讨论了所提出方法的可能扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal for Person-Oriented Research
Journal for Person-Oriented Research Psychology-Psychology (miscellaneous)
CiteScore
2.90
自引率
0.00%
发文量
9
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信