Calibration of parameter fields consisting of multiple statistical populations.

Ground water Pub Date : 2010-01-01 Epub Date: 2009-07-31 DOI:10.1111/j.1745-6584.2009.00607.x
Gijs M C M Janssen, Johan R Valstar
{"title":"Calibration of parameter fields consisting of multiple statistical populations.","authors":"Gijs M C M Janssen,&nbsp;Johan R Valstar","doi":"10.1111/j.1745-6584.2009.00607.x","DOIUrl":null,"url":null,"abstract":"<p><p>If a parameter field to be calibrated consists of more than one statistical population, usually not only the parameter values are uncertain, but the spatial distributions of the populations are uncertain as well. In this study, we demonstrate the potential of the multimodal calibration method we proposed recently for the calibration of such fields, as applied to real-world ground water models with several additional stochastic parameter fields. Our method enables the calibration of the spatial distribution of the statistical populations, as well as their spatially correlated parameterization, while honoring the complete prior geostatistical definition of the multimodal parameter field. We illustrate the implications of the method in terms of the reliability of the posterior model by comparing its performance to that of a \"conventional\" calibration approach in which the positions of the statistical populations are not allowed to change. Information from synthetic calibration runs is used to show how ignoring the uncertainty involved in the positions of the statistical populations not only denies the modeler the opportunity to use the measurement information to improve these positions but also unduly influences the posterior intrapopulation distributions, causes unjustified adjustments to the cocalibrated parameter fields, and results in poorer observation reproduction. The proposed multimodal calibration allows a more complete treatment of the relevant uncertainties, which prevents the abovementioned adverse effects and renders a more trustworthy posterior model.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":"92-105"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1745-6584.2009.00607.x","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ground water","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/j.1745-6584.2009.00607.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

If a parameter field to be calibrated consists of more than one statistical population, usually not only the parameter values are uncertain, but the spatial distributions of the populations are uncertain as well. In this study, we demonstrate the potential of the multimodal calibration method we proposed recently for the calibration of such fields, as applied to real-world ground water models with several additional stochastic parameter fields. Our method enables the calibration of the spatial distribution of the statistical populations, as well as their spatially correlated parameterization, while honoring the complete prior geostatistical definition of the multimodal parameter field. We illustrate the implications of the method in terms of the reliability of the posterior model by comparing its performance to that of a "conventional" calibration approach in which the positions of the statistical populations are not allowed to change. Information from synthetic calibration runs is used to show how ignoring the uncertainty involved in the positions of the statistical populations not only denies the modeler the opportunity to use the measurement information to improve these positions but also unduly influences the posterior intrapopulation distributions, causes unjustified adjustments to the cocalibrated parameter fields, and results in poorer observation reproduction. The proposed multimodal calibration allows a more complete treatment of the relevant uncertainties, which prevents the abovementioned adverse effects and renders a more trustworthy posterior model.

校正由多个统计总体组成的参数场。
如果一个待校准的参数字段包含多个统计总体,通常不仅参数值不确定,而且总体的空间分布也不确定。在这项研究中,我们展示了我们最近提出的多模态校准方法在这些领域的潜力,并将其应用于具有几个额外随机参数场的真实地下水模型。我们的方法能够校准统计总体的空间分布,以及它们的空间相关参数化,同时尊重完整的多模态参数场的先验地统计学定义。我们通过将后验模型的性能与不允许改变统计总体位置的“传统”校准方法的性能进行比较,说明了该方法在后验模型可靠性方面的含义。来自合成校准运行的信息被用来显示忽略统计总体位置所涉及的不确定性如何不仅剥夺了建模者使用测量信息来改善这些位置的机会,而且还会过度影响后验种群内分布,导致对协校准参数场的不合理调整,并导致较差的观测再现。所提出的多模态校准允许更完整地处理相关不确定性,从而防止上述不利影响,并提供更可靠的后验模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信