Vascular stem and progenitor cells in diabetic complications.

Experimental Diabetes Research Pub Date : 2012-01-01 Epub Date: 2012-05-15 DOI:10.1155/2012/580343
Gian Paolo Fadini, Paolo Madeddu, Johannes Waltenberger, Paolo Fiorina
{"title":"Vascular stem and progenitor cells in diabetic complications.","authors":"Gian Paolo Fadini, Paolo Madeddu, Johannes Waltenberger, Paolo Fiorina","doi":"10.1155/2012/580343","DOIUrl":null,"url":null,"abstract":"Hyperglycemia and its associated biochemical abnormalities damage vascular wall cells, especially the endothelium, leading to an increased risk of cardiovascular events and disease, as well as microangiopathy and end-organ complications. In the last decade, accumulating data suggest that vascular repair mechanisms are important to maintain normal homeostasis of the arterial wall and to prevent development of pathologic processes, such as atherosclerosis, restenosis, and microvascular disease. \n \nDiabetes mellitus, through the impairment of vascular stem and progenitor cells, entails a defective repair of the injured endothelium. The biochemical and cellular mechanisms that account for reduced or functionally impaired vascular progenitor cells in diabetes are not fully elucidated, and this is an intense area of research. Additionally, therapeutic approaches to modulate the endogenous reparative/regenerative processes are of particular interest in the setting of experimental and clinical diabetes research. \n \nFor this special issue of Experimental Diabetes Research, we invited investigators to contribute with original research articles and review articles that stimulate the continuing efforts to understand the molecular and cellular aspects underlying defective vascular repair by means of stem/progenitor cells in diabetes, as well as the development of interventions to reverse it. \n \nThe journal has received a variety of valuable submissions spanning the pathophysiological and therapeutic implications of vascular stem/progenitor cells. \n \nThe pathophysiological implications are herein described in the setting of both diabetes and the metabolic syndrome. S. Devaraj and I. Jialal report how number and/or functionality of endothelial progenitor cells (EPCs) could emerge as a novel cellular biomarker of endothelial/vascular dysfunction and cardiovascular disease (CVD) risk in patients with the metabolic syndrome. In the setting of diabetes, a focus review highlights the central contribution played by bone-marrow-derived progenitor cells in the development and progression of chronic complications. Not only are EPCs reduced and dysfunctional in diabetes, but they also appear to have a deranged differentiation capacity, which is shifted toward a procalcific phenotype that may have a negative impact on ectopic calcification and atherosclerosis. Of note, circulating progenitor cell phenotypes are not limited to EPC, but may include a variety of lineage-committed cells relevant for the pathobiology of diabetic complications. As an example, the level of pericyte progenitor cells (PPCs) in type 2 diabetes appears to be related to microangiopathy in response to glucose-lowering therapy. Among disparate complications, retinopathy has received a special attention: while G. Tremolada and colleagues provide a comprehensive analysis of the mechanisms of neoangiogenesis in the diabetic retina, R. Longeras et al. show how pigment-epithelium-derived-factor- (PEDF-) 34 attenuates EPC mobilization from the bone marrow into the bloodstream during retinal neovascularization. This therapeutic approach can now be considered part of the armamentarium available to reverse microangiopathy, through regenerative cells. In parallel, S. Bernardi et al. provided an analysis of cell-based strategies to counter diabetic complications that have been so far devised and applied in the experimental and clinical settings. Besides cell therapies, several other pharmacologic and nonpharmacologic approaches have shown ability to reverse EPCs dysfunction in diabetes. \n \nIn conclusion, this special issue provides a series of updated reviews on vascular stem/progenitor cell defects in diabetes and on the therapeutic approaches to reverse them and counter diabetic complications. Original contributions help us to dissect the complexity of vascular stem/progenitor cell biology and trace the way for future studies in this field. \n \nAmazingly, circulating progenitor cells are uncovering an entirely new scenario in diabetology research: it is all in the blood! \n \n \nGian Paolo Fadini \n \nPaolo Madeddu \n \nJohannes Waltenberger \n \nPaolo Fiorina","PeriodicalId":12109,"journal":{"name":"Experimental Diabetes Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/580343","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Diabetes Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/580343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Hyperglycemia and its associated biochemical abnormalities damage vascular wall cells, especially the endothelium, leading to an increased risk of cardiovascular events and disease, as well as microangiopathy and end-organ complications. In the last decade, accumulating data suggest that vascular repair mechanisms are important to maintain normal homeostasis of the arterial wall and to prevent development of pathologic processes, such as atherosclerosis, restenosis, and microvascular disease. Diabetes mellitus, through the impairment of vascular stem and progenitor cells, entails a defective repair of the injured endothelium. The biochemical and cellular mechanisms that account for reduced or functionally impaired vascular progenitor cells in diabetes are not fully elucidated, and this is an intense area of research. Additionally, therapeutic approaches to modulate the endogenous reparative/regenerative processes are of particular interest in the setting of experimental and clinical diabetes research. For this special issue of Experimental Diabetes Research, we invited investigators to contribute with original research articles and review articles that stimulate the continuing efforts to understand the molecular and cellular aspects underlying defective vascular repair by means of stem/progenitor cells in diabetes, as well as the development of interventions to reverse it. The journal has received a variety of valuable submissions spanning the pathophysiological and therapeutic implications of vascular stem/progenitor cells. The pathophysiological implications are herein described in the setting of both diabetes and the metabolic syndrome. S. Devaraj and I. Jialal report how number and/or functionality of endothelial progenitor cells (EPCs) could emerge as a novel cellular biomarker of endothelial/vascular dysfunction and cardiovascular disease (CVD) risk in patients with the metabolic syndrome. In the setting of diabetes, a focus review highlights the central contribution played by bone-marrow-derived progenitor cells in the development and progression of chronic complications. Not only are EPCs reduced and dysfunctional in diabetes, but they also appear to have a deranged differentiation capacity, which is shifted toward a procalcific phenotype that may have a negative impact on ectopic calcification and atherosclerosis. Of note, circulating progenitor cell phenotypes are not limited to EPC, but may include a variety of lineage-committed cells relevant for the pathobiology of diabetic complications. As an example, the level of pericyte progenitor cells (PPCs) in type 2 diabetes appears to be related to microangiopathy in response to glucose-lowering therapy. Among disparate complications, retinopathy has received a special attention: while G. Tremolada and colleagues provide a comprehensive analysis of the mechanisms of neoangiogenesis in the diabetic retina, R. Longeras et al. show how pigment-epithelium-derived-factor- (PEDF-) 34 attenuates EPC mobilization from the bone marrow into the bloodstream during retinal neovascularization. This therapeutic approach can now be considered part of the armamentarium available to reverse microangiopathy, through regenerative cells. In parallel, S. Bernardi et al. provided an analysis of cell-based strategies to counter diabetic complications that have been so far devised and applied in the experimental and clinical settings. Besides cell therapies, several other pharmacologic and nonpharmacologic approaches have shown ability to reverse EPCs dysfunction in diabetes. In conclusion, this special issue provides a series of updated reviews on vascular stem/progenitor cell defects in diabetes and on the therapeutic approaches to reverse them and counter diabetic complications. Original contributions help us to dissect the complexity of vascular stem/progenitor cell biology and trace the way for future studies in this field. Amazingly, circulating progenitor cells are uncovering an entirely new scenario in diabetology research: it is all in the blood! Gian Paolo Fadini Paolo Madeddu Johannes Waltenberger Paolo Fiorina
血管干和祖细胞在糖尿病并发症中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Diabetes Research
Experimental Diabetes Research 医学-内分泌学与代谢
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信