{"title":"Biotechnological production of chiral acetoin.","authors":"Wensi Meng, Cuiqing Ma, Ping Xu, Chao Gao","doi":"10.1016/j.tibtech.2022.01.008","DOIUrl":null,"url":null,"abstract":"<p><p>Acetoin (AC) is an important platform bulk chemical with versatile applications. It exists in two stereoisomeric forms: (3R)-AC and (3S)-AC. Both stereoisomers could be potentially applied in the pharmaceutical industry, agriculture, and in optically active α-hydroxyketone derivative synthesis. Chiral AC production has recently become a new research focus in biotechnology. Fermentative and biocatalytic routes that can produce (3R)-AC or (3S)-AC with high optical purity have been developed over the past several years. In this review we summarize recent advances in strain screening, metabolic engineering, and biocatalytic system construction aimed at improving the production of chiral AC. Limiting factors and possible solutions for chiral AC production are discussed.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"958-973"},"PeriodicalIF":14.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2022.01.008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Acetoin (AC) is an important platform bulk chemical with versatile applications. It exists in two stereoisomeric forms: (3R)-AC and (3S)-AC. Both stereoisomers could be potentially applied in the pharmaceutical industry, agriculture, and in optically active α-hydroxyketone derivative synthesis. Chiral AC production has recently become a new research focus in biotechnology. Fermentative and biocatalytic routes that can produce (3R)-AC or (3S)-AC with high optical purity have been developed over the past several years. In this review we summarize recent advances in strain screening, metabolic engineering, and biocatalytic system construction aimed at improving the production of chiral AC. Limiting factors and possible solutions for chiral AC production are discussed.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).