{"title":"PIG-A gene mutation as a genotoxicity biomaker in polycyclic aromatic hydrocarbon-exposed barbecue workers.","authors":"Yiyi Cao, Jing Xi, Chuanxi Tang, Ziying Yang, Weiying Liu, Xinyue You, Nannan Feng, Xin Yu Zhang, Jingui Wu, Yingxin Yu, Yang Luan","doi":"10.1186/s41021-021-00230-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The PIG-A gene mutation assay is a valuable tool for measuring in vivo gene mutations in blood cells. The human PIG-A assay, used as a potential genotoxicity biomarker, is minimally invasive, sensitive, and cost-efficient; however, the relationship between carcinogen exposure and PIG-A mutations is not well understood.</p><p><strong>Methods: </strong>We investigated the genotoxic effect of red blood cells using PIG-A assay and lymphocyte cytokinesis-block micronucleus test in barbecue restaurant workers (N = 70) exposed to polycyclic aromatic hydrocarbons (PAHs) and self-identified healthy control subjects (N = 56). Urinary PAH metabolites were measured to evaluate internal exposure levels.</p><p><strong>Results: </strong>Multivariate Poisson regression showed that the PAH-exposed workers exhibited significantly higher PIG-A mutant frequency (MF) (8.04 ± 6.81 × 10<sup>- 6</sup>) than did the controls (5.56 ± 5.26 × 10<sup>- 6</sup>) (RR = 0.707, 95% CI: 0.615-0.812, P < 0.001). These results indicate that PAH exposure is a risk factor for elevated PIG-A MF. The frequencies of micronuclei (MN) and nuclear buds (NBUD) in the PAH-exposed workers (MN: 3.06 ± 2.07 ‰, NBUD: 1.38 ± 1.02 ‰) were also significantly higher than in the controls (MN: 1.46 ± 0.64 ‰, P < 0.001; NBUD: 0.70 ± 0.60 ‰, P < 0.001). Additionally, PIG-A MFs showed better associations with several urinary hydroxylated PAH metabolites (P<sub>2-OH-Flu</sub> = 0.032, r<sub>2-OH-Flu</sub> = 0. 268; P<sub>2-OH-Phe</sub> = 0.022, r<sub>2-OH-Phe</sub> = 0.286; P<sub>3-OH-Phe</sub> = 0.0312, r<sub>3-OH-Phe</sub> = 0.270; P<sub>4-OH-Phe</sub> = 0.018, r<sub>4-OH-Phe</sub> = 0.296), while the increase in MN, NPB, and NBUD frequencies was not associated with any OH-PAH metabolites; and high-PAH-exposed workers showed the highest PIG-A MFs. Furthermore, there was a significant association between PIG-A MF and PAH exposure levels (Chi-square test for trend, P = 0.006).</p><p><strong>Conclusions: </strong>Our results indicate that an increase in PIG-A MF in barbecue workers could reflect the response to PAH exposure, providing evidence of its potential as a genotoxicity biomarker in human risk assessment.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":" ","pages":"54"},"PeriodicalIF":2.7000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656086/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-021-00230-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 6
Abstract
Background: The PIG-A gene mutation assay is a valuable tool for measuring in vivo gene mutations in blood cells. The human PIG-A assay, used as a potential genotoxicity biomarker, is minimally invasive, sensitive, and cost-efficient; however, the relationship between carcinogen exposure and PIG-A mutations is not well understood.
Methods: We investigated the genotoxic effect of red blood cells using PIG-A assay and lymphocyte cytokinesis-block micronucleus test in barbecue restaurant workers (N = 70) exposed to polycyclic aromatic hydrocarbons (PAHs) and self-identified healthy control subjects (N = 56). Urinary PAH metabolites were measured to evaluate internal exposure levels.
Results: Multivariate Poisson regression showed that the PAH-exposed workers exhibited significantly higher PIG-A mutant frequency (MF) (8.04 ± 6.81 × 10- 6) than did the controls (5.56 ± 5.26 × 10- 6) (RR = 0.707, 95% CI: 0.615-0.812, P < 0.001). These results indicate that PAH exposure is a risk factor for elevated PIG-A MF. The frequencies of micronuclei (MN) and nuclear buds (NBUD) in the PAH-exposed workers (MN: 3.06 ± 2.07 ‰, NBUD: 1.38 ± 1.02 ‰) were also significantly higher than in the controls (MN: 1.46 ± 0.64 ‰, P < 0.001; NBUD: 0.70 ± 0.60 ‰, P < 0.001). Additionally, PIG-A MFs showed better associations with several urinary hydroxylated PAH metabolites (P2-OH-Flu = 0.032, r2-OH-Flu = 0. 268; P2-OH-Phe = 0.022, r2-OH-Phe = 0.286; P3-OH-Phe = 0.0312, r3-OH-Phe = 0.270; P4-OH-Phe = 0.018, r4-OH-Phe = 0.296), while the increase in MN, NPB, and NBUD frequencies was not associated with any OH-PAH metabolites; and high-PAH-exposed workers showed the highest PIG-A MFs. Furthermore, there was a significant association between PIG-A MF and PAH exposure levels (Chi-square test for trend, P = 0.006).
Conclusions: Our results indicate that an increase in PIG-A MF in barbecue workers could reflect the response to PAH exposure, providing evidence of its potential as a genotoxicity biomarker in human risk assessment.
期刊介绍:
Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences.
Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.