Ping Yang, Shiyan Li, Hao Zhang, Xiaofeng Ding, Qian Tan
{"title":"LRG1 Accelerates Wound Healing in Diabetic Rats by Promoting Angiogenesis via the Wnt/β-Catenin Signaling Pathway.","authors":"Ping Yang, Shiyan Li, Hao Zhang, Xiaofeng Ding, Qian Tan","doi":"10.1177/15347346221081610","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with diabetic wounds may end with lower extremity amputation or death. Leucine-rich α-2-glycoprotein 1 (LRG1) is an effective regulator of angiogenesis and essential for timely wound healing. However, its role in regulating angiogenesis in diabetic wounds remains unclear. This study aimed to investigate the pro-angiogenic function of exogenous LRG1 in diabetic wound healing and explore possible mechanisms. LRG1 expression patterns following injury in normal and diabetic wounds were determined by western blotting. Local injection of LRG1 was used to verify the effects on angiogenesis and wound healing in diabetic rats. Immunohistochemical staining for CD31 was used to analyze the vessel density. Human umbilical vein endothelial cells (HUVECs) cultured in hyperglycemia were used to explore how LRG1 promotes angiogenesis in diabetic wound healing. We found that the expression peak of LRG1 around the wounds was delayed in diabetic rats compared with that in normal rats. Exogenous administration of LRG1 significantly accelerated the wound closure rate and promoted angiogenesis in diabetic rats. In addition, exogenous LRG1 effectively restored the proliferation, migration, and tube formation ability of HUVECs under hyperglycemia. Mechanistically, LRG1 promoted angiogenesis and diabetic wound healing mainly by activating the Wnt/β-catenin pathway, which is inhibited in diabetic wounds. This research suggests that LRG1 promotes angiogenesis and wound closure in diabetic rats by improving angiogenesis via activation of the Wnt/β-catenin pathway. Hence, LRG1 may be a possible therapeutic strategy for diabetic foot treatment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"568-576"},"PeriodicalIF":16.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/15347346221081610","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with diabetic wounds may end with lower extremity amputation or death. Leucine-rich α-2-glycoprotein 1 (LRG1) is an effective regulator of angiogenesis and essential for timely wound healing. However, its role in regulating angiogenesis in diabetic wounds remains unclear. This study aimed to investigate the pro-angiogenic function of exogenous LRG1 in diabetic wound healing and explore possible mechanisms. LRG1 expression patterns following injury in normal and diabetic wounds were determined by western blotting. Local injection of LRG1 was used to verify the effects on angiogenesis and wound healing in diabetic rats. Immunohistochemical staining for CD31 was used to analyze the vessel density. Human umbilical vein endothelial cells (HUVECs) cultured in hyperglycemia were used to explore how LRG1 promotes angiogenesis in diabetic wound healing. We found that the expression peak of LRG1 around the wounds was delayed in diabetic rats compared with that in normal rats. Exogenous administration of LRG1 significantly accelerated the wound closure rate and promoted angiogenesis in diabetic rats. In addition, exogenous LRG1 effectively restored the proliferation, migration, and tube formation ability of HUVECs under hyperglycemia. Mechanistically, LRG1 promoted angiogenesis and diabetic wound healing mainly by activating the Wnt/β-catenin pathway, which is inhibited in diabetic wounds. This research suggests that LRG1 promotes angiogenesis and wound closure in diabetic rats by improving angiogenesis via activation of the Wnt/β-catenin pathway. Hence, LRG1 may be a possible therapeutic strategy for diabetic foot treatment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.