{"title":"Self-similar properties of avalanche statistics in a simple turbulent model.","authors":"Roberto Benzi, Ilaria Castaldi, Federico Toschi, Jeannot Trampert","doi":"10.1098/rsta.2021.0074","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider a simplified model of turbulence for large Reynolds numbers driven by a constant power energy input on large scales. In the statistical stationary regime, the behaviour of the kinetic energy is characterized by two well-defined phases: a laminar phase where the kinetic energy grows linearly for a (random) time [Formula: see text] followed by abrupt avalanche-like energy drops of sizes [Formula: see text] due to strong intermittent fluctuations of energy dissipation. We study the probability distribution [Formula: see text] and [Formula: see text] which both exhibit a quite well-defined scaling behaviour. Although [Formula: see text] and [Formula: see text] are not statistically correlated, we suggest and numerically checked that their scaling properties are related based on a simple, but non-trivial, scaling argument. We propose that the same approach can be used for other systems showing avalanche-like behaviour such as amorphous solids and seismic events. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210074"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we consider a simplified model of turbulence for large Reynolds numbers driven by a constant power energy input on large scales. In the statistical stationary regime, the behaviour of the kinetic energy is characterized by two well-defined phases: a laminar phase where the kinetic energy grows linearly for a (random) time [Formula: see text] followed by abrupt avalanche-like energy drops of sizes [Formula: see text] due to strong intermittent fluctuations of energy dissipation. We study the probability distribution [Formula: see text] and [Formula: see text] which both exhibit a quite well-defined scaling behaviour. Although [Formula: see text] and [Formula: see text] are not statistically correlated, we suggest and numerically checked that their scaling properties are related based on a simple, but non-trivial, scaling argument. We propose that the same approach can be used for other systems showing avalanche-like behaviour such as amorphous solids and seismic events. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.