Self-similar properties of avalanche statistics in a simple turbulent model.

Roberto Benzi, Ilaria Castaldi, Federico Toschi, Jeannot Trampert
{"title":"Self-similar properties of avalanche statistics in a simple turbulent model.","authors":"Roberto Benzi,&nbsp;Ilaria Castaldi,&nbsp;Federico Toschi,&nbsp;Jeannot Trampert","doi":"10.1098/rsta.2021.0074","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider a simplified model of turbulence for large Reynolds numbers driven by a constant power energy input on large scales. In the statistical stationary regime, the behaviour of the kinetic energy is characterized by two well-defined phases: a laminar phase where the kinetic energy grows linearly for a (random) time [Formula: see text] followed by abrupt avalanche-like energy drops of sizes [Formula: see text] due to strong intermittent fluctuations of energy dissipation. We study the probability distribution [Formula: see text] and [Formula: see text] which both exhibit a quite well-defined scaling behaviour. Although [Formula: see text] and [Formula: see text] are not statistically correlated, we suggest and numerically checked that their scaling properties are related based on a simple, but non-trivial, scaling argument. We propose that the same approach can be used for other systems showing avalanche-like behaviour such as amorphous solids and seismic events. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210074"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we consider a simplified model of turbulence for large Reynolds numbers driven by a constant power energy input on large scales. In the statistical stationary regime, the behaviour of the kinetic energy is characterized by two well-defined phases: a laminar phase where the kinetic energy grows linearly for a (random) time [Formula: see text] followed by abrupt avalanche-like energy drops of sizes [Formula: see text] due to strong intermittent fluctuations of energy dissipation. We study the probability distribution [Formula: see text] and [Formula: see text] which both exhibit a quite well-defined scaling behaviour. Although [Formula: see text] and [Formula: see text] are not statistically correlated, we suggest and numerically checked that their scaling properties are related based on a simple, but non-trivial, scaling argument. We propose that the same approach can be used for other systems showing avalanche-like behaviour such as amorphous solids and seismic events. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.

简单湍流模型中雪崩统计量的自相似性质。
在本文中,我们考虑了在大尺度上由恒定能量输入驱动的大雷诺数湍流的简化模型。在统计平稳状态下,动能的行为表现为两个明确定义的阶段:一个是层流阶段,其中动能在一段(随机)时间内线性增长[公式:见文本],随后是由于能量耗散的强烈间歇性波动而导致的像雪崩一样大小的突然能量下降[公式:见文本]。我们研究了概率分布[公式:见文]和[公式:见文],它们都表现出相当明确的缩放行为。虽然[公式:见文本]和[公式:见文本]在统计上不相关,但我们建议并通过数值检查,它们的缩放特性是基于一个简单但非平凡的缩放参数相关的。我们建议,同样的方法可以用于其他系统显示雪崩样行为,如无定形固体和地震事件。这篇文章是主题“攀登湍流大厦(第一部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信