{"title":"Concurrent TMS-EEG to reveal the neuroplastic changes in the prefrontal and insular cortices in the analgesic effects of DLPFC-rTMS.","authors":"Yang Ye, Jinghua Wang, Xianwei Che","doi":"10.1093/cercor/bhab493","DOIUrl":null,"url":null,"abstract":"<p><p>The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear. Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex. Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed neuroplastic changes associated with DLPFC analgesia.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"4436-4446"},"PeriodicalIF":4.6000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhab493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5
Abstract
The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear. Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex. Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed neuroplastic changes associated with DLPFC analgesia.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.