Rishav Mitra, Kevin Wu, Changhan Lee, James C A Bardwell
{"title":"ATP-Independent Chaperones.","authors":"Rishav Mitra, Kevin Wu, Changhan Lee, James C A Bardwell","doi":"10.1146/annurev-biophys-090121-082906","DOIUrl":null,"url":null,"abstract":"<p><p>The folding of proteins into their native structure is crucial for the functioning of all biological processes. Molecular chaperones are guardians of the proteome that assist in protein folding and prevent the accumulation of aberrant protein conformations that can lead to proteotoxicity. ATP-independent chaperones do not require ATP to regulate their functional cycle. Although these chaperones have been traditionally regarded as passive holdases that merely prevent aggregation, recent work has shown that they can directly affect the folding energy landscape by tuning their affinity to various folding states of the client. This review focuses on emerging paradigms in the mechanism of action of ATP-independent chaperones and on the various modes of regulating client binding and release.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-090121-082906","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 9
Abstract
The folding of proteins into their native structure is crucial for the functioning of all biological processes. Molecular chaperones are guardians of the proteome that assist in protein folding and prevent the accumulation of aberrant protein conformations that can lead to proteotoxicity. ATP-independent chaperones do not require ATP to regulate their functional cycle. Although these chaperones have been traditionally regarded as passive holdases that merely prevent aggregation, recent work has shown that they can directly affect the folding energy landscape by tuning their affinity to various folding states of the client. This review focuses on emerging paradigms in the mechanism of action of ATP-independent chaperones and on the various modes of regulating client binding and release.
期刊介绍:
The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.