{"title":"Regression analysis of additive hazards model with sparse longitudinal covariates.","authors":"Zhuowei Sun, Hongyuan Cao, Li Chen","doi":"10.1007/s10985-022-09548-6","DOIUrl":null,"url":null,"abstract":"<p><p>Additive hazards model is often used to complement the proportional hazards model in the analysis of failure time data. Statistical inference of additive hazards model with time-dependent longitudinal covariates requires the availability of the whole trajectory of the longitudinal process, which is not realistic in practice. The commonly used last value carried forward approach for intermittently observed longitudinal covariates can induce biased parameter estimation. The more principled joint modeling of the longitudinal process and failure time data imposes strong modeling assumptions, which is difficult to verify. In this paper, we propose methods that weigh the distance between the observational time of longitudinal covariates and the failure time, resulting in unbiased regression coefficient estimation. We establish the consistency and asymptotic normality of the proposed estimators. Simulation studies provide numerical support for the theoretical findings. Data from an Alzheimer's study illustrate the practical utility of the methodology.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09548-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
Additive hazards model is often used to complement the proportional hazards model in the analysis of failure time data. Statistical inference of additive hazards model with time-dependent longitudinal covariates requires the availability of the whole trajectory of the longitudinal process, which is not realistic in practice. The commonly used last value carried forward approach for intermittently observed longitudinal covariates can induce biased parameter estimation. The more principled joint modeling of the longitudinal process and failure time data imposes strong modeling assumptions, which is difficult to verify. In this paper, we propose methods that weigh the distance between the observational time of longitudinal covariates and the failure time, resulting in unbiased regression coefficient estimation. We establish the consistency and asymptotic normality of the proposed estimators. Simulation studies provide numerical support for the theoretical findings. Data from an Alzheimer's study illustrate the practical utility of the methodology.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.