Regression analysis of additive hazards model with sparse longitudinal covariates.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2022-04-01 Epub Date: 2022-02-11 DOI:10.1007/s10985-022-09548-6
Zhuowei Sun, Hongyuan Cao, Li Chen
{"title":"Regression analysis of additive hazards model with sparse longitudinal covariates.","authors":"Zhuowei Sun,&nbsp;Hongyuan Cao,&nbsp;Li Chen","doi":"10.1007/s10985-022-09548-6","DOIUrl":null,"url":null,"abstract":"<p><p>Additive hazards model is often used to complement the proportional hazards model in the analysis of failure time data. Statistical inference of additive hazards model with time-dependent longitudinal covariates requires the availability of the whole trajectory of the longitudinal process, which is not realistic in practice. The commonly used last value carried forward approach for intermittently observed longitudinal covariates can induce biased parameter estimation. The more principled joint modeling of the longitudinal process and failure time data imposes strong modeling assumptions, which is difficult to verify. In this paper, we propose methods that weigh the distance between the observational time of longitudinal covariates and the failure time, resulting in unbiased regression coefficient estimation. We establish the consistency and asymptotic normality of the proposed estimators. Simulation studies provide numerical support for the theoretical findings. Data from an Alzheimer's study illustrate the practical utility of the methodology.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09548-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

Additive hazards model is often used to complement the proportional hazards model in the analysis of failure time data. Statistical inference of additive hazards model with time-dependent longitudinal covariates requires the availability of the whole trajectory of the longitudinal process, which is not realistic in practice. The commonly used last value carried forward approach for intermittently observed longitudinal covariates can induce biased parameter estimation. The more principled joint modeling of the longitudinal process and failure time data imposes strong modeling assumptions, which is difficult to verify. In this paper, we propose methods that weigh the distance between the observational time of longitudinal covariates and the failure time, resulting in unbiased regression coefficient estimation. We establish the consistency and asymptotic normality of the proposed estimators. Simulation studies provide numerical support for the theoretical findings. Data from an Alzheimer's study illustrate the practical utility of the methodology.

纵向稀疏协变量加性危害模型的回归分析。
在失效时间数据分析中,常采用加性风险模型作为比例风险模型的补充。具有时变纵向协变量的加性灾害模型的统计推断需要得到纵向过程的整个轨迹,这在实际中是不现实的。对于间歇性观测的纵向协变量,常用的最后值结转方法会导致参数估计偏倚。对纵向过程和失效时间数据的更有原则性的联合建模施加了很强的建模假设,难以验证。在本文中,我们提出了加权纵向协变量观测时间与失效时间之间距离的方法,从而获得无偏回归系数估计。我们建立了所提估计量的相合性和渐近正态性。模拟研究为理论结果提供了数值支持。来自阿尔茨海默氏症研究的数据说明了该方法的实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信