Faster Convergence in Multiobjective Optimization Algorithms Based on Decomposition

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuri Lavinas;Marcelo Ladeira;Claus Aranha
{"title":"Faster Convergence in Multiobjective Optimization Algorithms Based on Decomposition","authors":"Yuri Lavinas;Marcelo Ladeira;Claus Aranha","doi":"10.1162/evco_a_00306","DOIUrl":null,"url":null,"abstract":"The Resource Allocation approach (RA) improves the performance of MOEA/D by maintaining a big population and updating few solutions each generation. However, most of the studies on RA generally focused on the properties of different Resource Allocation metrics. Thus, it is still uncertain what the main factors are that lead to increments in performance of MOEA/D with RA. This study investigates the effects of MOEA/D with the Partial Update Strategy (PS) in an extensive set of MOPs to generate insights into correspondences of MOEA/D with the partial update and MOEA/D with small population size and big population size. Our work undertakes an in-depth analysis of the populational dynamics behaviour considering their final approximation Pareto sets, anytime hypervolume performance, attained regions, and number of unique nondominated solutions. Our results indicate that MOEA/D with partial update progresses with the search as fast as MOEA/D with small population size and explores the search space as MOEA/D with big population size. MOEA/D with partial update can mitigate common problems related to population size choice with better convergence speed in most MOPs, as shown by the results of hypervolume and number of unique nondominated solutions, and as the anytime performance and Empirical Attainment Function indicate.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9931052/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

The Resource Allocation approach (RA) improves the performance of MOEA/D by maintaining a big population and updating few solutions each generation. However, most of the studies on RA generally focused on the properties of different Resource Allocation metrics. Thus, it is still uncertain what the main factors are that lead to increments in performance of MOEA/D with RA. This study investigates the effects of MOEA/D with the Partial Update Strategy (PS) in an extensive set of MOPs to generate insights into correspondences of MOEA/D with the partial update and MOEA/D with small population size and big population size. Our work undertakes an in-depth analysis of the populational dynamics behaviour considering their final approximation Pareto sets, anytime hypervolume performance, attained regions, and number of unique nondominated solutions. Our results indicate that MOEA/D with partial update progresses with the search as fast as MOEA/D with small population size and explores the search space as MOEA/D with big population size. MOEA/D with partial update can mitigate common problems related to population size choice with better convergence speed in most MOPs, as shown by the results of hypervolume and number of unique nondominated solutions, and as the anytime performance and Empirical Attainment Function indicate.
基于分解的多目标优化算法的快速收敛性
资源分配方法(RA)通过保持大量人口和每代更新少量解决方案来提高MOEA/D的性能。然而,大多数关于RA的研究通常集中在不同资源分配指标的性质上。因此,导致RA MOEA/D性能增加的主要因素是什么仍然不确定。本研究在一组广泛的MOP中调查了部分更新策略(PS)的MOEA/D的影响,以深入了解部分更新的MOEA/De和小种群和大种群的MOEA/de的对应关系。我们的工作对种群动力学行为进行了深入分析,考虑到它们的最终近似Pareto集、任何时候的超容量性能、获得的区域和独特的非支配解的数量。我们的结果表明,部分更新的MOEA/D与小种群规模的MOEA/D一样快速地进行搜索,并与大种群规模的MOEA/D一样探索搜索空间。具有部分更新的MOEA/D可以在大多数MOP中以更好的收敛速度缓解与种群规模选择相关的常见问题,如超容量和数量的唯一非支配解的结果所示,以及任何时间性能和经验达到函数所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信