Pamina Füting, Lars Barthel, Timothy C Cairns, Heiko Briesen, Stefan Schmideder
{"title":"Filamentous fungal applications in biotechnology: a combined bibliometric and patentometric assessment.","authors":"Pamina Füting, Lars Barthel, Timothy C Cairns, Heiko Briesen, Stefan Schmideder","doi":"10.1186/s40694-021-00131-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Processes and products employing filamentous fungi are increasing contributors to biotechnology. These organisms are used as cell factories for the synthesis of platform chemicals, enzymes, acids, foodstuffs and therapeutics. More recent applications include processing biomass into construction or textile materials. These exciting advances raise several interrelated questions regarding the contributions of filamentous fungi to biotechnology. For example, are advances in this discipline a major contributor compared to other organisms, e.g. plants or bacteria? From a geographical perspective, where is this work conducted? Which species are predominantly used? How do biotech companies actually use these organisms?</p><p><strong>Results: </strong>To glean a snapshot of the state of the discipline, literature (bibliometry) and patent (patentometry) outputs of filamentous fungal applications and the related fields were quantitatively surveyed. How these outputs vary across fungal species, industrial application(s), geographical locations and biotechnological companies were analysed. Results identified (i) fungi as crucial drivers for publications and patents in biotechnology, (ii) enzyme and organic acid production as the main applications, (iii) Aspergillus as the most commonly used genus by biotechnologists, (iv) China, the United States, Brazil, and Europe as the leaders in filamentous fungal science, and (v) the key players in industrial biotechnology.</p><p><strong>Conclusions: </strong>This study generated a summary of the status of filamentous fungal applications in biotechnology. Both bibliometric and patentometric data have identified several key trends, breakthroughs and challenges faced by the fungal research community. The analysis suggests that the future is bright for filamentous fungal research worldwide.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40694-021-00131-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Processes and products employing filamentous fungi are increasing contributors to biotechnology. These organisms are used as cell factories for the synthesis of platform chemicals, enzymes, acids, foodstuffs and therapeutics. More recent applications include processing biomass into construction or textile materials. These exciting advances raise several interrelated questions regarding the contributions of filamentous fungi to biotechnology. For example, are advances in this discipline a major contributor compared to other organisms, e.g. plants or bacteria? From a geographical perspective, where is this work conducted? Which species are predominantly used? How do biotech companies actually use these organisms?
Results: To glean a snapshot of the state of the discipline, literature (bibliometry) and patent (patentometry) outputs of filamentous fungal applications and the related fields were quantitatively surveyed. How these outputs vary across fungal species, industrial application(s), geographical locations and biotechnological companies were analysed. Results identified (i) fungi as crucial drivers for publications and patents in biotechnology, (ii) enzyme and organic acid production as the main applications, (iii) Aspergillus as the most commonly used genus by biotechnologists, (iv) China, the United States, Brazil, and Europe as the leaders in filamentous fungal science, and (v) the key players in industrial biotechnology.
Conclusions: This study generated a summary of the status of filamentous fungal applications in biotechnology. Both bibliometric and patentometric data have identified several key trends, breakthroughs and challenges faced by the fungal research community. The analysis suggests that the future is bright for filamentous fungal research worldwide.