Fei Dai, Pengfei Cao, Penggui Huang, Qi Mo, Bi Huang
{"title":"Hybrid Deep Learning Approach for Traffic Speed Prediction.","authors":"Fei Dai, Pengfei Cao, Penggui Huang, Qi Mo, Bi Huang","doi":"10.1089/big.2021.0251","DOIUrl":null,"url":null,"abstract":"<p><p>Traffic speed prediction plays a fundamental role in traffic management and driving route planning. However, timely accurate traffic speed prediction is challenging as it is affected by complex spatial and temporal correlations. Most existing works cannot simultaneously model spatial and temporal correlations in traffic data, resulting in unsatisfactory prediction performance. In this article, we propose a novel hybrid deep learning approach, named HDL4TSP, to predict traffic speed in each region of a city, which consists of an input layer, a spatial layer, a temporal layer, a fusion layer, and an output layer. Specifically, first, the spatial layer employs graph convolutional networks to capture spatial near dependencies and spatial distant dependencies in the spatial dimension. Second, the temporal layer employs convolutional long short-term memory (ConvLSTM) networks to model closeness, daily periodicity, and weekly periodicity in the temporal dimension. Third, the fusion layer designs a fusion component to merge the outputs of ConvLSTM networks. Finally, we conduct extensive experiments and experimental results to show that HDL4TSP outperforms four baselines on two real-world data sets.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0251","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic speed prediction plays a fundamental role in traffic management and driving route planning. However, timely accurate traffic speed prediction is challenging as it is affected by complex spatial and temporal correlations. Most existing works cannot simultaneously model spatial and temporal correlations in traffic data, resulting in unsatisfactory prediction performance. In this article, we propose a novel hybrid deep learning approach, named HDL4TSP, to predict traffic speed in each region of a city, which consists of an input layer, a spatial layer, a temporal layer, a fusion layer, and an output layer. Specifically, first, the spatial layer employs graph convolutional networks to capture spatial near dependencies and spatial distant dependencies in the spatial dimension. Second, the temporal layer employs convolutional long short-term memory (ConvLSTM) networks to model closeness, daily periodicity, and weekly periodicity in the temporal dimension. Third, the fusion layer designs a fusion component to merge the outputs of ConvLSTM networks. Finally, we conduct extensive experiments and experimental results to show that HDL4TSP outperforms four baselines on two real-world data sets.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.