Mengnan Jiang, Yang Wang, Fayu Liu, Hanheng Du, Yuchao Li, Huanhuan Zhang, Suet To, Steven Wang, Chin Pan, Jihong Yu, David Quéré, Zuankai Wang
{"title":"Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling","authors":"Mengnan Jiang, Yang Wang, Fayu Liu, Hanheng Du, Yuchao Li, Huanhuan Zhang, Suet To, Steven Wang, Chin Pan, Jihong Yu, David Quéré, Zuankai Wang","doi":"10.1038/s41586-021-04307-3","DOIUrl":null,"url":null,"abstract":"The Leidenfrost effect, namely the levitation of drops on hot solids1, is known to deteriorate heat transfer at high temperature2. The Leidenfrost point can be elevated by texturing materials to favour the solid–liquid contact2–10 and by arranging channels at the surface to decouple the wetting phenomena from the vapour dynamics3. However, maximizing both the Leidenfrost point and thermal cooling across a wide range of temperatures can be mutually exclusive3,7,8. Here we report a rational design of structured thermal armours that inhibit the Leidenfrost effect up to 1,150 °C, that is, 600 °C more than previously attained, yet preserving heat transfer. Our design consists of steel pillars serving as thermal bridges, an embedded insulating membrane that wicks and spreads the liquid and U-shaped channels for vapour evacuation. The coexistence of materials with contrasting thermal and geometrical properties cooperatively transforms normally uniform temperatures into non-uniform ones, generates lateral wicking at all temperatures and enhances thermal cooling. Structured thermal armours are limited only by their melting point, rather than by a failure in the design. The material can be made flexible, and thus attached to substrates otherwise challenging to structure. Our strategy holds the potential to enable the implementation of efficient water cooling at ultra-high solid temperatures, which is, to date, an uncharted property. Structured thermal armours on the surface of a solid inhibit the Leidenfrost effect, even when heated to temperatures in excess of 1,000 °C, pointing the way towards new cooling strategies for high-temperature solids.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"601 7894","pages":"568-572"},"PeriodicalIF":50.5000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-021-04307-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 85
Abstract
The Leidenfrost effect, namely the levitation of drops on hot solids1, is known to deteriorate heat transfer at high temperature2. The Leidenfrost point can be elevated by texturing materials to favour the solid–liquid contact2–10 and by arranging channels at the surface to decouple the wetting phenomena from the vapour dynamics3. However, maximizing both the Leidenfrost point and thermal cooling across a wide range of temperatures can be mutually exclusive3,7,8. Here we report a rational design of structured thermal armours that inhibit the Leidenfrost effect up to 1,150 °C, that is, 600 °C more than previously attained, yet preserving heat transfer. Our design consists of steel pillars serving as thermal bridges, an embedded insulating membrane that wicks and spreads the liquid and U-shaped channels for vapour evacuation. The coexistence of materials with contrasting thermal and geometrical properties cooperatively transforms normally uniform temperatures into non-uniform ones, generates lateral wicking at all temperatures and enhances thermal cooling. Structured thermal armours are limited only by their melting point, rather than by a failure in the design. The material can be made flexible, and thus attached to substrates otherwise challenging to structure. Our strategy holds the potential to enable the implementation of efficient water cooling at ultra-high solid temperatures, which is, to date, an uncharted property. Structured thermal armours on the surface of a solid inhibit the Leidenfrost effect, even when heated to temperatures in excess of 1,000 °C, pointing the way towards new cooling strategies for high-temperature solids.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.