{"title":"A density functional theory (DFT) study on reduced partition function ratios of oxygen species adsorbed on a Pt<sub>19</sub> cluster and oxygen isotope effects.","authors":"Takao Oi, Yoshikazu Kikawada, Satoshi Yanase","doi":"10.1080/10256016.2021.1985488","DOIUrl":null,"url":null,"abstract":"<p><p>A density functional theory (DFT) computation on oxygen species adsorbed on platinum (Pt) catalyst surfaces has been carried out to elucidate oxygen isotope fractionation observed at the cathode of a polymer electrolyte membrane fuel cell (PEMFC). The Pt(111) catalyst surface was modelled by a Pt<sub>19</sub> cluster, and O, OH, OHH, OO, OOH, OHOH and HOHOH were assumed to be the oxygen species adsorbed on the Pt(111) surface. The oxygen isotope reduced partition function ratios (RPFRs) of the adsorbed species were calculated using the vibrational frequencies obtained by normal mode analyses performed on the optimized structures. Various oxygen isotope exchange equilibria among the adsorbed oxygen species and oxygen and water molecules in the gas phase were examined using their RPFRs. Experimental observation that the lighter <sup>16</sup>O is enriched in water molecules exhausted from the cathode is explainable in a satisfactory manner by assuming oxygen isotope exchange equilibria of O<sub>2</sub> molecule with O, OH, OO and OOH adsorbed on the Pt(111) surface that appear in the first half of the conversion reaction from O<sub>2</sub> to H<sub>2</sub>O and those of H<sub>2</sub>O molecule with the adsorbed oxygen species, OHH, OHOH and HOHOH, formed in the latter half of the conversion reaction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10256016.2021.1985488","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
A density functional theory (DFT) computation on oxygen species adsorbed on platinum (Pt) catalyst surfaces has been carried out to elucidate oxygen isotope fractionation observed at the cathode of a polymer electrolyte membrane fuel cell (PEMFC). The Pt(111) catalyst surface was modelled by a Pt19 cluster, and O, OH, OHH, OO, OOH, OHOH and HOHOH were assumed to be the oxygen species adsorbed on the Pt(111) surface. The oxygen isotope reduced partition function ratios (RPFRs) of the adsorbed species were calculated using the vibrational frequencies obtained by normal mode analyses performed on the optimized structures. Various oxygen isotope exchange equilibria among the adsorbed oxygen species and oxygen and water molecules in the gas phase were examined using their RPFRs. Experimental observation that the lighter 16O is enriched in water molecules exhausted from the cathode is explainable in a satisfactory manner by assuming oxygen isotope exchange equilibria of O2 molecule with O, OH, OO and OOH adsorbed on the Pt(111) surface that appear in the first half of the conversion reaction from O2 to H2O and those of H2O molecule with the adsorbed oxygen species, OHH, OHOH and HOHOH, formed in the latter half of the conversion reaction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.