{"title":"Chitosan-coated niosome as an efficient curcumin carrier to cross the blood-brain barrier: an animal study.","authors":"Sahar Salehi, Mohammad Sadegh Nourbakhsh, Mardali Yousefpour, Ghadir Rajabzadeh, Sajad Sahab-Negah","doi":"10.1080/08982104.2021.2019763","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to improve the curcumin bio-stability and brain permeability by loading in bare niosome (BN) and chitosan-coated niosome (ChN). Span 60, tween 60, and cholesterol were optimized as niosome shell components to attain the highest encapsulation efficiency (EE), besides the lowest particle size, using the mixture design method. The resulting optimized BN had a mean diameter of 80 ± 0.2 nm and surface charge of -31 ± 0.1 mv, which changed to 85 ± 0.15 nm and 35 ± 0.12 mv, respectively, after applying the chitosan layer. The EE% in bare niosome were about 80 ± 0.2, which changed to 82 ± 0.21 in ChN. The optimized formulation displayed sustained release, following the Hixson-Crowell model.Wistar rats were subjected to intraperitoneal injection (i.p.) of BN and ChN to evaluate the blood-brain barrier permeability of the curcumin. In this regard, ChN significantly increased curcumin concentration in different parts of the liver, plasma, and central nervous system (cerebral cortex, cerebellum, and stratum), compared with BN. Altogether, our results showed that ChN could be used as a promising delivery system for the treatment of some neurological diseases such as Alzheimer<sup>'</sup>s.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"32 3","pages":"284-292"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2021.2019763","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
This study aims to improve the curcumin bio-stability and brain permeability by loading in bare niosome (BN) and chitosan-coated niosome (ChN). Span 60, tween 60, and cholesterol were optimized as niosome shell components to attain the highest encapsulation efficiency (EE), besides the lowest particle size, using the mixture design method. The resulting optimized BN had a mean diameter of 80 ± 0.2 nm and surface charge of -31 ± 0.1 mv, which changed to 85 ± 0.15 nm and 35 ± 0.12 mv, respectively, after applying the chitosan layer. The EE% in bare niosome were about 80 ± 0.2, which changed to 82 ± 0.21 in ChN. The optimized formulation displayed sustained release, following the Hixson-Crowell model.Wistar rats were subjected to intraperitoneal injection (i.p.) of BN and ChN to evaluate the blood-brain barrier permeability of the curcumin. In this regard, ChN significantly increased curcumin concentration in different parts of the liver, plasma, and central nervous system (cerebral cortex, cerebellum, and stratum), compared with BN. Altogether, our results showed that ChN could be used as a promising delivery system for the treatment of some neurological diseases such as Alzheimer's.
期刊介绍:
The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society.
The scope of the Journal includes:
Formulation and characterisation of systems
Formulation engineering of systems
Synthetic and physical lipid chemistry
Lipid Biology
Biomembranes
Vaccines
Emerging technologies and systems related to liposomes and vesicle type systems
Developmental methodologies and new analytical techniques pertaining to the general area
Pharmacokinetics, pharmacodynamics and biodistribution of systems
Clinical applications.
The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.