Horizontal bone augmentation of the edentulous area with simultaneous endodontic microsurgery of the adjacent tooth: A digitally-driven multidisciplinary case report with a 1-year follow-up.
Jing Wang, Yilin Luo, Xuelian Tan, Chenbing Wang, Vicha Huangphattarakul, Chen Hu, Dingming Hang, Yi Man
{"title":"Horizontal bone augmentation of the edentulous area with simultaneous endodontic microsurgery of the adjacent tooth: A digitally-driven multidisciplinary case report with a 1-year follow-up.","authors":"Jing Wang, Yilin Luo, Xuelian Tan, Chenbing Wang, Vicha Huangphattarakul, Chen Hu, Dingming Hang, Yi Man","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To introduce a novel and efficient procedure to solve a multidisciplinary issue connected to implant-related surgery in areas near periapical lesions of adjacent teeth using single-stage combined surgery while exploring a new way to prevent retrograde peri-implantitis.</p><p><strong>Materials and methods: </strong>A 31-year-old woman diagnosed with a Kennedy III dentition defect in the maxillary right central incisor and posttreatment apical periodontitis in the maxillary right lateral incisor was treated using a multidisciplinary procedure. First, the preoperative data were collected from intraoral, extraoral facial and CBCT scans. Then, the aesthetic appearance of the anterior teeth was planned digitally and implant insertion was simulated. Next, virtual bone augmentation was carried out with reference to the simulated implant position, and according to the virtual augmentation, the templates for bone shell harvesting (also used for apical osteotomy and root tip resection during endodontic microsurgery) and bone shell grafting of the edentulous area were designed and fabricated. The templates for combined surgery (endodontic microsurgery and horizontal bone augmentation) consisted of one basal template and multiple interchangeable attachments via a plugin design to make guided endodontic microsurgery and digitally guided bone augmentation more efficient. Combined surgery was then carried out using the templates for guidance. During surgery, the apical inflammation affecting the maxillary right lateral incisor was first removed and its preserved apical bony window was prepared as an autogenous bone shell for bone augmentation of the maxillary right central incisor site. Guided bone regeneration of the edentulous area and guided tissue regeneration were then performed for the adjacent tooth. Six months after the combined surgery, digital guided implant surgery was carried out for the edentulous area. The final prosthesis was delivered in accordance with the preoperative aesthetic design and achieved using an implant-supported restoration for the maxillary right central incisor, full crown restoration for the maxillary right lateral incisor, and ceramic veneers for the maxillary left central and lateral incisors for space closure.</p><p><strong>Results: </strong>The horizontal bone augmentation in the edentulous area and endodontic microsurgery on the neighbouring tooth were performed successfully in a single-stage surgical procedure; thus, augmentation of the resorbed alveolar bone and removal of infection in the adjacent site were achieved simultaneously. At the 1-year follow-up after combined surgery, the healing of the natural maxillary right lateral incisor and the area having undergone bone augmentation showed promising results with no postoperative complications.</p><p><strong>Conclusions: </strong>This novel digital workflow appears effective in addressing the problem of periapical lesions in retained teeth adjacent to the edentulous area that requires horizontal bone augmentation in one surgical procedure, providing an efficient way of resolving the problem using endodontics and implantology, and preventing retrograde peri-implantitis.</p>","PeriodicalId":73463,"journal":{"name":"International journal of oral implantology (Berlin, Germany)","volume":"14 4","pages":"435-451"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oral implantology (Berlin, Germany)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To introduce a novel and efficient procedure to solve a multidisciplinary issue connected to implant-related surgery in areas near periapical lesions of adjacent teeth using single-stage combined surgery while exploring a new way to prevent retrograde peri-implantitis.
Materials and methods: A 31-year-old woman diagnosed with a Kennedy III dentition defect in the maxillary right central incisor and posttreatment apical periodontitis in the maxillary right lateral incisor was treated using a multidisciplinary procedure. First, the preoperative data were collected from intraoral, extraoral facial and CBCT scans. Then, the aesthetic appearance of the anterior teeth was planned digitally and implant insertion was simulated. Next, virtual bone augmentation was carried out with reference to the simulated implant position, and according to the virtual augmentation, the templates for bone shell harvesting (also used for apical osteotomy and root tip resection during endodontic microsurgery) and bone shell grafting of the edentulous area were designed and fabricated. The templates for combined surgery (endodontic microsurgery and horizontal bone augmentation) consisted of one basal template and multiple interchangeable attachments via a plugin design to make guided endodontic microsurgery and digitally guided bone augmentation more efficient. Combined surgery was then carried out using the templates for guidance. During surgery, the apical inflammation affecting the maxillary right lateral incisor was first removed and its preserved apical bony window was prepared as an autogenous bone shell for bone augmentation of the maxillary right central incisor site. Guided bone regeneration of the edentulous area and guided tissue regeneration were then performed for the adjacent tooth. Six months after the combined surgery, digital guided implant surgery was carried out for the edentulous area. The final prosthesis was delivered in accordance with the preoperative aesthetic design and achieved using an implant-supported restoration for the maxillary right central incisor, full crown restoration for the maxillary right lateral incisor, and ceramic veneers for the maxillary left central and lateral incisors for space closure.
Results: The horizontal bone augmentation in the edentulous area and endodontic microsurgery on the neighbouring tooth were performed successfully in a single-stage surgical procedure; thus, augmentation of the resorbed alveolar bone and removal of infection in the adjacent site were achieved simultaneously. At the 1-year follow-up after combined surgery, the healing of the natural maxillary right lateral incisor and the area having undergone bone augmentation showed promising results with no postoperative complications.
Conclusions: This novel digital workflow appears effective in addressing the problem of periapical lesions in retained teeth adjacent to the edentulous area that requires horizontal bone augmentation in one surgical procedure, providing an efficient way of resolving the problem using endodontics and implantology, and preventing retrograde peri-implantitis.