The Arabidopsis HOP2 gene has a role in preventing illegitimate connections between nonhomologous chromosome regions.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chromosome Research Pub Date : 2022-03-01 Epub Date: 2022-01-22 DOI:10.1007/s10577-021-09681-2
Yisell Farahani-Tafreshi, Chun Wei, Peilu Gan, Jenya Daradur, C Daniel Riggs, Clare A Hasenkampf
{"title":"The Arabidopsis HOP2 gene has a role in preventing illegitimate connections between nonhomologous chromosome regions.","authors":"Yisell Farahani-Tafreshi,&nbsp;Chun Wei,&nbsp;Peilu Gan,&nbsp;Jenya Daradur,&nbsp;C Daniel Riggs,&nbsp;Clare A Hasenkampf","doi":"10.1007/s10577-021-09681-2","DOIUrl":null,"url":null,"abstract":"<p><p>Meiotic homologous chromosomes synapse and undergo crossing over (CO). In many eukaryotes, both synapsis and crossing over require the induction of double stranded breaks (DSBs) and subsequent repair via homologous recombination. In these organisms, two key proteins are recombinases RAD51 and DMC1. Recombinase-modulators HOP2 and MND1 assist RAD51 and DMC1 and also are required for synapsis and CO. We have investigated the hop2-1 phenotype in Arabidopsis during the segregation stages of both meiosis and mitosis. Despite a general lack of synapsis during prophase I, we observed extensive, stable interconnections between nonhomologous chromosomes in diploid hop2-1 nuclei in first and second meiotic divisions. Using γH2Ax as a marker of unrepaired DSBs, we detected γH2AX foci from leptotene through early pachytene but saw no foci from mid-pachytene onward. We conclude that the bridges seen from metaphase I onward are due to mis-repaired DSBs, not unrepaired ones. Examining haploids, we found that wild type haploids produce only univalents, but hop2-1 haploids like hop2-1 diploids have illegitimate connections stable enough to produce bridged chromosomes during segregation. Our results suggest that HOP2 has a significant active role in preventing repairs that use nonhomologous chromosomes during meiosis. We also found evidence that HOP2 plays a role in preventing illegitimate repair of radiation-induced DSBs in rapidly dividing petal cells. We conclude that HOP2 in Arabidopsis plays both a positive role in promoting synapsis and a separable role in preventing DSB repair using nonhomologous chromosomes. SIGNIFICANCE STATEMENT : The fidelity of homologous recombination (HR) during meiosis is essential to the production of viable gametes and for maintaining genome integrity in vegetative cells. HOP2 is an important protein for accurate meiotic HR in plants. We have found evidence of high levels of illegitimate repairs between nonhomologous chromosomes during meiosis and in irradiated petal cells in hop2-1 mutants, suggesting a role for HOP2 beyond its established role in synapsis and crossing over.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-021-09681-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Meiotic homologous chromosomes synapse and undergo crossing over (CO). In many eukaryotes, both synapsis and crossing over require the induction of double stranded breaks (DSBs) and subsequent repair via homologous recombination. In these organisms, two key proteins are recombinases RAD51 and DMC1. Recombinase-modulators HOP2 and MND1 assist RAD51 and DMC1 and also are required for synapsis and CO. We have investigated the hop2-1 phenotype in Arabidopsis during the segregation stages of both meiosis and mitosis. Despite a general lack of synapsis during prophase I, we observed extensive, stable interconnections between nonhomologous chromosomes in diploid hop2-1 nuclei in first and second meiotic divisions. Using γH2Ax as a marker of unrepaired DSBs, we detected γH2AX foci from leptotene through early pachytene but saw no foci from mid-pachytene onward. We conclude that the bridges seen from metaphase I onward are due to mis-repaired DSBs, not unrepaired ones. Examining haploids, we found that wild type haploids produce only univalents, but hop2-1 haploids like hop2-1 diploids have illegitimate connections stable enough to produce bridged chromosomes during segregation. Our results suggest that HOP2 has a significant active role in preventing repairs that use nonhomologous chromosomes during meiosis. We also found evidence that HOP2 plays a role in preventing illegitimate repair of radiation-induced DSBs in rapidly dividing petal cells. We conclude that HOP2 in Arabidopsis plays both a positive role in promoting synapsis and a separable role in preventing DSB repair using nonhomologous chromosomes. SIGNIFICANCE STATEMENT : The fidelity of homologous recombination (HR) during meiosis is essential to the production of viable gametes and for maintaining genome integrity in vegetative cells. HOP2 is an important protein for accurate meiotic HR in plants. We have found evidence of high levels of illegitimate repairs between nonhomologous chromosomes during meiosis and in irradiated petal cells in hop2-1 mutants, suggesting a role for HOP2 beyond its established role in synapsis and crossing over.

拟南芥HOP2基因在防止非同源染色体区域之间的非法连接中起作用。
减数分裂同源染色体突触并进行交叉(CO)。在许多真核生物中,突触和交叉都需要诱导双链断裂(DSBs)并随后通过同源重组进行修复。在这些生物体中,两个关键蛋白是重组酶RAD51和DMC1。重组酶调节剂HOP2和MND1协助RAD51和DMC1,并且也是突触和CO所必需的。我们研究了拟南芥在减数分裂和有丝分裂分离阶段的HOP2 -1表型。尽管在I前期普遍缺乏突触,但我们观察到二倍体hop2-1核在第一次和第二次减数分裂中非同源染色体之间广泛而稳定的相互连接。利用γ - h2ax作为未修复dsb的标记,我们检测到γ - h2ax在瘦素期到粗素期早期都有灶,但在粗素期中期以后没有灶。我们得出结论,从中期I开始看到的桥是由于dsb修复不当,而不是未修复的。通过对单倍体的检测,我们发现野生型单倍体只产生单价体,而hop2-1单倍体和hop2-1二倍体一样,在分离过程中具有足够稳定的非法连接,可以产生桥接染色体。我们的研究结果表明,HOP2在减数分裂期间防止使用非同源染色体的修复中具有重要的积极作用。我们还发现证据表明,HOP2在防止辐射诱导的快速分裂花瓣细胞dsb的不正当修复中起作用。我们得出结论,HOP2在拟南芥中既可以促进突触,又可以防止DSB通过非同源染色体进行修复。意义声明:减数分裂过程中同源重组(HR)的保真度对于产生活配子和维持营养细胞基因组完整性至关重要。HOP2是确定植物减数分裂HR的重要蛋白。我们已经发现了HOP2 -1突变体在减数分裂期间和辐照花瓣细胞中非同源染色体之间高水平的非法修复的证据,这表明HOP2的作用超出了其在突触和杂交中的既定作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chromosome Research
Chromosome Research 生物-生化与分子生物学
CiteScore
4.70
自引率
3.80%
发文量
31
审稿时长
1 months
期刊介绍: Chromosome Research publishes manuscripts from work based on all organisms and encourages submissions in the following areas including, but not limited, to: · Chromosomes and their linkage to diseases; · Chromosome organization within the nucleus; · Chromatin biology (transcription, non-coding RNA, etc); · Chromosome structure, function and mechanics; · Chromosome and DNA repair; · Epigenetic chromosomal functions (centromeres, telomeres, replication, imprinting, dosage compensation, sex determination, chromosome remodeling); · Architectural/epigenomic organization of the genome; · Functional annotation of the genome; · Functional and comparative genomics in plants and animals; · Karyology studies that help resolve difficult taxonomic problems or that provide clues to fundamental mechanisms of genome and karyotype evolution in plants and animals; · Mitosis and Meiosis; · Cancer cytogenomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信