Irving Oswaldo Velázquez-Ríos, Reiner Rincón-Rosales, Federico Antonio Gutiérrez-Miceli, Rocio J Alcántara-Hernández, Víctor Manuel Ruíz-Valdiviezo
{"title":"Prokaryotic diversity across a pH gradient in the \"El Chichón\" crater-lake: a naturally thermo-acidic environment.","authors":"Irving Oswaldo Velázquez-Ríos, Reiner Rincón-Rosales, Federico Antonio Gutiérrez-Miceli, Rocio J Alcántara-Hernández, Víctor Manuel Ruíz-Valdiviezo","doi":"10.1007/s00792-022-01257-0","DOIUrl":null,"url":null,"abstract":"<p><p>The \"El Chichón\" crater-lake in Mexico is a thermo-acidic environment whose microorganisms have been scarcely studied. In this study, we surveyed the prokaryotic communities by amplicon sequencing of the 16S rRNA gene considering samples of sediment and water collected within a pH/temperature gradient (pH 1.9-5.1, 38-89 °C). Further, we interpreted these results within a physicochemical context. The composition of the microbial assemblage differed significantly between the sediments and water. Sediment communities were different in the site with the highest temperature and lower pH value compared to the other ones sampled, while those in the water were relatively similar at all points. Most of the genera found were related to Alicyclobacillus, Acinetobacter, Bacillus, Mesoaciditoga, Methanothermobacter, Desulfitobacterium, Therminicanus, Kyrpidia, Paenibacillus, Thermoanaerobacterium, and Gelria. Some of these genera are known by their thermo-acidic tolerant capacities with flexible metabolisms to use diverse electron donor/acceptors (S or Fe), while others are thermo(acid)philes that mainly occur in the most extreme sites of the lake. These results show the presence of a microbial community adapted to the changing conditions of a very dynamic crater-lake, that include chemoorganotrophs and chemolithotrophs.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"26 1","pages":"8"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-022-01257-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The "El Chichón" crater-lake in Mexico is a thermo-acidic environment whose microorganisms have been scarcely studied. In this study, we surveyed the prokaryotic communities by amplicon sequencing of the 16S rRNA gene considering samples of sediment and water collected within a pH/temperature gradient (pH 1.9-5.1, 38-89 °C). Further, we interpreted these results within a physicochemical context. The composition of the microbial assemblage differed significantly between the sediments and water. Sediment communities were different in the site with the highest temperature and lower pH value compared to the other ones sampled, while those in the water were relatively similar at all points. Most of the genera found were related to Alicyclobacillus, Acinetobacter, Bacillus, Mesoaciditoga, Methanothermobacter, Desulfitobacterium, Therminicanus, Kyrpidia, Paenibacillus, Thermoanaerobacterium, and Gelria. Some of these genera are known by their thermo-acidic tolerant capacities with flexible metabolisms to use diverse electron donor/acceptors (S or Fe), while others are thermo(acid)philes that mainly occur in the most extreme sites of the lake. These results show the presence of a microbial community adapted to the changing conditions of a very dynamic crater-lake, that include chemoorganotrophs and chemolithotrophs.
期刊介绍:
Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.