Systematic validation of structural brain networks in cerebral small vessel disease.

Anna Dewenter, Benno Gesierich, Annemieke Ter Telgte, Kim Wiegertjes, Mengfei Cai, Mina A Jacob, José P Marques, David G Norris, Nicolai Franzmeier, Frank-Erik de Leeuw, Anil M Tuladhar, Marco Duering
{"title":"Systematic validation of structural brain networks in cerebral small vessel disease.","authors":"Anna Dewenter,&nbsp;Benno Gesierich,&nbsp;Annemieke Ter Telgte,&nbsp;Kim Wiegertjes,&nbsp;Mengfei Cai,&nbsp;Mina A Jacob,&nbsp;José P Marques,&nbsp;David G Norris,&nbsp;Nicolai Franzmeier,&nbsp;Frank-Erik de Leeuw,&nbsp;Anil M Tuladhar,&nbsp;Marco Duering","doi":"10.1177/0271678X211069228","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral small vessel disease (SVD) is considered a disconnection syndrome, which can be quantified using structural brain network analysis obtained from diffusion MRI. Network analysis is a demanding analysis approach and the added benefit over simpler diffusion MRI analysis is largely unexplored in SVD. In this pre-registered study, we assessed the clinical and technical validity of network analysis in two non-overlapping samples of SVD patients from the RUN DMC study (n = 52 for exploration and longitudinal analysis and n = 105 for validation). We compared two connectome pipelines utilizing single-shell or multi-shell diffusion MRI, while also systematically comparing different node and edge definitions. For clinical validation, we assessed the added benefit of network analysis in explaining processing speed and in detecting short-term disease progression. For technical validation, we determined test-retest repeatability.Our findings in clinical validation show that structural brain networks provide only a small added benefit over simpler global white matter diffusion metrics and do not capture short-term disease progression. Test-retest reliability was excellent for most brain networks. Our findings question the added value of brain network analysis in clinical applications in SVD and highlight the utility of simpler diffusion MRI based markers.</p>","PeriodicalId":520660,"journal":{"name":"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1020-1032"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/96/ce/10.1177_0271678X211069228.PMC9125482.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X211069228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Cerebral small vessel disease (SVD) is considered a disconnection syndrome, which can be quantified using structural brain network analysis obtained from diffusion MRI. Network analysis is a demanding analysis approach and the added benefit over simpler diffusion MRI analysis is largely unexplored in SVD. In this pre-registered study, we assessed the clinical and technical validity of network analysis in two non-overlapping samples of SVD patients from the RUN DMC study (n = 52 for exploration and longitudinal analysis and n = 105 for validation). We compared two connectome pipelines utilizing single-shell or multi-shell diffusion MRI, while also systematically comparing different node and edge definitions. For clinical validation, we assessed the added benefit of network analysis in explaining processing speed and in detecting short-term disease progression. For technical validation, we determined test-retest repeatability.Our findings in clinical validation show that structural brain networks provide only a small added benefit over simpler global white matter diffusion metrics and do not capture short-term disease progression. Test-retest reliability was excellent for most brain networks. Our findings question the added value of brain network analysis in clinical applications in SVD and highlight the utility of simpler diffusion MRI based markers.

Abstract Image

Abstract Image

Abstract Image

结构脑网络在脑血管疾病中的系统验证。
脑小血管疾病(SVD)被认为是一种断开综合征,可以通过弥散MRI获得的结构脑网络分析来量化。网络分析是一种要求很高的分析方法,在SVD中,与更简单的扩散MRI分析相比,网络分析的附加优势在很大程度上尚未得到探索。在这项预注册的研究中,我们对来自RUN DMC研究的两个非重叠SVD患者样本(n = 52用于探索和纵向分析,n = 105用于验证)的网络分析的临床和技术有效性进行了评估。我们使用单壳或多壳扩散MRI比较了两个连接体管道,同时也系统地比较了不同的节点和边缘定义。为了临床验证,我们评估了网络分析在解释处理速度和检测短期疾病进展方面的附加益处。为了技术验证,我们确定了测试-重测试的重复性。我们在临床验证中的发现表明,与简单的全球白质扩散指标相比,结构脑网络仅提供了少量的额外益处,并且不能捕获短期疾病进展。对大多数大脑网络来说,重测信度非常好。我们的研究结果质疑了脑网络分析在SVD临床应用中的附加价值,并强调了更简单的弥散MRI标记物的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信