{"title":"DL-3-n-butylphthalide imparts neuroprotection via Nrf2/SIRT3 pathway in a mouse model of vascular dementia","authors":"Liwei Gao, Xin Guo, Shan Liu, Qiang Sun, Xuejiao Qin, Peiyuan Lv, Ming Hu, Jing Xu, Yanhong Dong","doi":"10.1016/j.brainres.2022.147785","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this study was to explore the mechanism of action of DL-3-n-butylphthalidein (NBP) the treatment of vascular dementia (VD) in mice. A vascular dementia mouse model was established with repeated cerebral ischemia/reperfusion (I/R), followed by administration of two different doses of NBP for 28 days. A Morris water maze was used to detect any changes in spatial cognition, while H&E staining was used to observe any histopathological changes in the hippocampus. The number of Caspase-3 and Caspase-9 positive neurons in the hippocampal CA1 region were also assessed using immunohistochemistry. The expression of Nrf2, Sirt3, and autophagy-related factors LC3 II/I and p62 in the hippocampus were detected by Western blotting. The results indicated that NBP treatment ameliorated learning and memory deficits, attenuated pathological damage in the CA1 regions, and reduced autophagy and apoptosis via the Nrf2/SIRT3 pathway after repeated cerebral I/R. Therefore, NBP treatment can improve the learning and cognitive memory of VD mice, possibly through the inhibition of autophagy and apoptosis mediated by the Nrf2/SIRT3 signaling pathway.</p></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1779 ","pages":"Article 147785"},"PeriodicalIF":2.6000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899322000099","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
The goal of this study was to explore the mechanism of action of DL-3-n-butylphthalidein (NBP) the treatment of vascular dementia (VD) in mice. A vascular dementia mouse model was established with repeated cerebral ischemia/reperfusion (I/R), followed by administration of two different doses of NBP for 28 days. A Morris water maze was used to detect any changes in spatial cognition, while H&E staining was used to observe any histopathological changes in the hippocampus. The number of Caspase-3 and Caspase-9 positive neurons in the hippocampal CA1 region were also assessed using immunohistochemistry. The expression of Nrf2, Sirt3, and autophagy-related factors LC3 II/I and p62 in the hippocampus were detected by Western blotting. The results indicated that NBP treatment ameliorated learning and memory deficits, attenuated pathological damage in the CA1 regions, and reduced autophagy and apoptosis via the Nrf2/SIRT3 pathway after repeated cerebral I/R. Therefore, NBP treatment can improve the learning and cognitive memory of VD mice, possibly through the inhibition of autophagy and apoptosis mediated by the Nrf2/SIRT3 signaling pathway.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.