Remarks on the principles of statistical fluid mechanics.

Koji Ohkitani
{"title":"Remarks on the principles of statistical fluid mechanics.","authors":"Koji Ohkitani","doi":"10.1098/rsta.2021.0077","DOIUrl":null,"url":null,"abstract":"<p><p>This is an idiosyncratic survey of statistical fluid mechanics centering on the Hopf functional differential equation. Using the Burgers equation for illustration, we review several functional integration approaches to the theory of turbulence. We note in particular that some important contributions have been brought about by researchers working on wave propagation in random media, among which Uriel Frisch is not an exception. We also discuss a particular finite-dimensional approximation for the Burgers equation. This article is part of the theme issue ''Scaling the turbulence edifice (part 1)'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210077"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This is an idiosyncratic survey of statistical fluid mechanics centering on the Hopf functional differential equation. Using the Burgers equation for illustration, we review several functional integration approaches to the theory of turbulence. We note in particular that some important contributions have been brought about by researchers working on wave propagation in random media, among which Uriel Frisch is not an exception. We also discuss a particular finite-dimensional approximation for the Burgers equation. This article is part of the theme issue ''Scaling the turbulence edifice (part 1)'.

统计流体力学原理评述。
这是一个以霍普夫泛函微分方程为中心的统计流体力学的特殊调查。以Burgers方程为例,回顾了紊流理论的几种泛函积分方法。我们特别注意到,研究随机介质中波传播的研究人员作出了一些重要贡献,其中尤列尔·弗里施也不例外。我们还讨论了一个特定的有限维近似的汉堡方程。这篇文章是主题“攀登湍流大厦(第一部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信