{"title":"Physiological Ecology of Winter Hibernation by the High-Altitude Frog <i>Nanorana parkeri</i>.","authors":"Yonggang Niu, Qiang Chen, Kenneth B Storey, Linhong Teng, Xiangyong Li, Tisen Xu, Haiying Zhang","doi":"10.1086/718764","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe Xizang plateau frog, <i>Nanorana parkeri</i> (Anura: Dicroglossidae), enters a dormant state in the winter in response to seasonal cold and lack of food. To investigate the physiological and ecological characteristics of overwintering in this species, we measured habitat conditions (hibernacula temperatures, body temperature, and water quality variables), morphology, metabolite concentrations, total antioxidant capacity (T-AOC), and bacteria-killing ability (BKA) of plasma during summer and winter. We found that <i>N. parkeri</i> hibernates underwater at the bottom of ponds (10-20-cm depth). Dissolved oxygen content in the water decreases significantly (by 12%) in the winter compared with summer, suggesting that overwintering <i>N. parkeri</i> may experience hypoxia. Body mass, body mass index, hepatosomatic index, and hepatic glycogen concentration all increased significantly in winter-collected frogs as compared to summer-collected individuals, indicating that overwintering <i>N. parkeri</i> accumulates high fuel/energy reserves to support prolonged periods of hibernation. A significant reduction in glucose, urea, and lactate concentrations in most organs may be closely related to metabolic depression in overwintering <i>N. parkeri</i>. Liver lactate concentration rose significantly in winter-collected frogs, suggesting that anaerobic metabolism dominates when this species overwinters. The T-AOC of plasma showed a significant reduction in winter, suggesting a reduced need for antioxidant defenses. Oppositely, the BKA of plasma increased significantly in winter versus summer, indicating that innate immunity was enhanced during overwintering. In summary, these behavioral (migrating to caves), physiological, and biochemical adjustments may be key for the successful overwintering of this high-altitude frog.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/718764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10
Abstract
AbstractThe Xizang plateau frog, Nanorana parkeri (Anura: Dicroglossidae), enters a dormant state in the winter in response to seasonal cold and lack of food. To investigate the physiological and ecological characteristics of overwintering in this species, we measured habitat conditions (hibernacula temperatures, body temperature, and water quality variables), morphology, metabolite concentrations, total antioxidant capacity (T-AOC), and bacteria-killing ability (BKA) of plasma during summer and winter. We found that N. parkeri hibernates underwater at the bottom of ponds (10-20-cm depth). Dissolved oxygen content in the water decreases significantly (by 12%) in the winter compared with summer, suggesting that overwintering N. parkeri may experience hypoxia. Body mass, body mass index, hepatosomatic index, and hepatic glycogen concentration all increased significantly in winter-collected frogs as compared to summer-collected individuals, indicating that overwintering N. parkeri accumulates high fuel/energy reserves to support prolonged periods of hibernation. A significant reduction in glucose, urea, and lactate concentrations in most organs may be closely related to metabolic depression in overwintering N. parkeri. Liver lactate concentration rose significantly in winter-collected frogs, suggesting that anaerobic metabolism dominates when this species overwinters. The T-AOC of plasma showed a significant reduction in winter, suggesting a reduced need for antioxidant defenses. Oppositely, the BKA of plasma increased significantly in winter versus summer, indicating that innate immunity was enhanced during overwintering. In summary, these behavioral (migrating to caves), physiological, and biochemical adjustments may be key for the successful overwintering of this high-altitude frog.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.