Exon Skipping Through Chimeric Antisense U1 snRNAs to Correct Retinitis Pigmentosa GTPase-Regulator (RPGR) Splice Defect.

IF 4 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nucleic acid therapeutics Pub Date : 2022-08-01 Epub Date: 2022-02-14 DOI:10.1089/nat.2021.0053
Giuseppina Covello, Gehan H Ibrahim, Niccolò Bacchi, Simona Casarosa, Michela Alessandra Denti
{"title":"Exon Skipping Through Chimeric Antisense <i>U1</i> snRNAs to Correct Retinitis Pigmentosa GTPase-Regulator (<i>RPGR</i>) Splice Defect.","authors":"Giuseppina Covello,&nbsp;Gehan H Ibrahim,&nbsp;Niccolò Bacchi,&nbsp;Simona Casarosa,&nbsp;Michela Alessandra Denti","doi":"10.1089/nat.2021.0053","DOIUrl":null,"url":null,"abstract":"<p><p>Inherited retinal dystrophies are caused by mutations in more than 250 genes, each of them carrying several types of mutations that can lead to different clinical phenotypes. Mutations in <i>Retinitis Pigmentosa GTPase-Regulator</i> (<i>RPGR</i>) cause X-linked Retinitis pigmentosa (RP). A nucleotide substitution in intron 9 of <i>RPGR</i> causes the increase of an alternatively spliced isoform of the mature mRNA, bearing exon 9a (E9a). This introduces a stop codon, leading to truncation of the protein. Aiming at restoring impaired gene expression, we developed an antisense RNA-based therapeutic approach for the skipping of <i>RPGR</i> E9a. We designed a set of specific <i>U1</i> antisense snRNAs (U1_asRNAs) and tested their efficacy <i>in vitro</i>, upon transient cotransfection with <i>RPGR</i> minigene reporter systems in HEK-293T, 661W, and PC-12 cell lines. We thus identified three chimeric U1_asRNAs that efficiently mediate E9a skipping, correcting the genetic defect. Unexpectedly, the U1-5'antisense construct, which exhibited the highest exon-skipping efficiency in PC-12 cells, induced E9a inclusion in HEK-293T and 661W cells, indicating caution in the choice of preclinical model systems when testing RNA splicing-correcting therapies. Our data provide a proof of principle for the application of U1_snRNA exon skipping-based approach to correct splicing defects in <i>RPGR</i>.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"333-349"},"PeriodicalIF":4.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/1a/nat.2021.0053.PMC9416563.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2021.0053","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inherited retinal dystrophies are caused by mutations in more than 250 genes, each of them carrying several types of mutations that can lead to different clinical phenotypes. Mutations in Retinitis Pigmentosa GTPase-Regulator (RPGR) cause X-linked Retinitis pigmentosa (RP). A nucleotide substitution in intron 9 of RPGR causes the increase of an alternatively spliced isoform of the mature mRNA, bearing exon 9a (E9a). This introduces a stop codon, leading to truncation of the protein. Aiming at restoring impaired gene expression, we developed an antisense RNA-based therapeutic approach for the skipping of RPGR E9a. We designed a set of specific U1 antisense snRNAs (U1_asRNAs) and tested their efficacy in vitro, upon transient cotransfection with RPGR minigene reporter systems in HEK-293T, 661W, and PC-12 cell lines. We thus identified three chimeric U1_asRNAs that efficiently mediate E9a skipping, correcting the genetic defect. Unexpectedly, the U1-5'antisense construct, which exhibited the highest exon-skipping efficiency in PC-12 cells, induced E9a inclusion in HEK-293T and 661W cells, indicating caution in the choice of preclinical model systems when testing RNA splicing-correcting therapies. Our data provide a proof of principle for the application of U1_snRNA exon skipping-based approach to correct splicing defects in RPGR.

嵌合反义U1 snrna外显子跳变纠正视网膜色素变性GTPase-Regulator (RPGR)剪接缺陷。
遗传性视网膜营养不良症是由250多个基因的突变引起的,每个基因都携带几种类型的突变,这些突变可能导致不同的临床表型。色素性视网膜炎gtpase调控因子(RPGR)突变导致x连锁色素性视网膜炎(RP)。RPGR内含子9的核苷酸替换导致成熟mRNA的选择性剪接异构体增加,该异构体带有外显子9a (E9a)。这引入了一个终止密码子,导致蛋白质的截断。为了恢复受损的基因表达,我们开发了一种基于反义rna的RPGR E9a跳过治疗方法。我们设计了一组特异性的U1反义snrna (u1_asrna),并在体外测试了它们在HEK-293T、661W和PC-12细胞系中与RPGR迷你基因报告系统的瞬时共转染的有效性。因此,我们确定了三个嵌合的u1_asrna,它们有效地介导E9a跳变,纠正遗传缺陷。出乎意料的是,在PC-12细胞中表现出最高外显子跳变效率的u1 -5'反义构建体诱导了HEK-293T和661W细胞中的E9a包涵,这表明在测试RNA剪接纠正疗法时,在临床前模型系统的选择上要谨慎。我们的数据为应用基于U1_snRNA外显子跳过的方法来纠正RPGR中的剪接缺陷提供了原理证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic acid therapeutics
Nucleic acid therapeutics BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
7.60
自引率
7.50%
发文量
47
审稿时长
>12 weeks
期刊介绍: Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信