Rui Jorge Nobre, Diana D Lobo, Carina Henriques, Sonia P Duarte, Sara M Lopes, Ana C Silva, Miguel M Lopes, Fanny Mariet, Lukas K Schwarz, M S Baatje, Valerie Ferreira, Astrid Vallès, Luis Pereira de Almeida, Melvin M Evers, Lodewijk J A Toonen
{"title":"miRNA-Mediated Knockdown of ATXN3 Alleviates Molecular Disease Hallmarks in a Mouse Model for Spinocerebellar Ataxia Type 3.","authors":"Rui Jorge Nobre, Diana D Lobo, Carina Henriques, Sonia P Duarte, Sara M Lopes, Ana C Silva, Miguel M Lopes, Fanny Mariet, Lukas K Schwarz, M S Baatje, Valerie Ferreira, Astrid Vallès, Luis Pereira de Almeida, Melvin M Evers, Lodewijk J A Toonen","doi":"10.1089/nat.2021.0020","DOIUrl":null,"url":null,"abstract":"<p><p>Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the <i>ATXN3</i> gene. This mutation leads to a toxic gain of function of the ataxin-3 protein, resulting in neuronal dysfunction and atrophy of specific brain regions over time. As ataxin-3 is a dispensable protein in rodents, ataxin-3 knockdown by gene therapy may be a powerful approach for the treatment of SCA3. In this study, we tested the feasibility of an adeno-associated viral (AAV) vector carrying a previously described artificial microRNA against <i>ATXN3</i> in a striatal mouse model of SCA3. Striatal injection of the AAV resulted in good distribution throughout the striatum, with strong dose-dependent ataxin-3 knockdown. The hallmark intracellular ataxin-3 inclusions were almost completely alleviated by the microRNA-induced <i>ATXN3</i> knockdown. In addition, the striatal lesion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) in the SCA3 mice was rescued by <i>ATXN3</i> knockdown, indicating functional rescue of neuronal signaling and health upon AAV treatment. Together, these data suggest that microRNA-induced ataxin-3 knockdown is a promising therapeutic strategy in the treatment of SCA3.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"194-205"},"PeriodicalIF":4.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221165/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2021.0020","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the ATXN3 gene. This mutation leads to a toxic gain of function of the ataxin-3 protein, resulting in neuronal dysfunction and atrophy of specific brain regions over time. As ataxin-3 is a dispensable protein in rodents, ataxin-3 knockdown by gene therapy may be a powerful approach for the treatment of SCA3. In this study, we tested the feasibility of an adeno-associated viral (AAV) vector carrying a previously described artificial microRNA against ATXN3 in a striatal mouse model of SCA3. Striatal injection of the AAV resulted in good distribution throughout the striatum, with strong dose-dependent ataxin-3 knockdown. The hallmark intracellular ataxin-3 inclusions were almost completely alleviated by the microRNA-induced ATXN3 knockdown. In addition, the striatal lesion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) in the SCA3 mice was rescued by ATXN3 knockdown, indicating functional rescue of neuronal signaling and health upon AAV treatment. Together, these data suggest that microRNA-induced ataxin-3 knockdown is a promising therapeutic strategy in the treatment of SCA3.
期刊介绍:
Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.