Time-modulated excitation for enhanced single-molecule localization microscopy.

Pierre Jouchet, Christian Poüs, Emmanuel Fort, Sandrine Lévêque-Fort
{"title":"Time-modulated excitation for enhanced single-molecule localization microscopy.","authors":"Pierre Jouchet,&nbsp;Christian Poüs,&nbsp;Emmanuel Fort,&nbsp;Sandrine Lévêque-Fort","doi":"10.1098/rsta.2020.0299","DOIUrl":null,"url":null,"abstract":"<p><p>Structured illumination in single-molecule localization microscopy provides new information on the position of molecules and thus improves the localization precision compared to standard localization methods. Here, we used a time-shifted sinusoidal excitation pattern to modulate the fluorescence signal of the molecules whose position information is carried by the phase and recovered by synchronous demodulation. We designed two flexible fast demodulation systems located upstream of the camera, allowing us to overcome the limiting camera acquisition frequency and thus to maximize the collection of photons in the demodulation process. The temporally modulated fluorescence signal was then sampled synchronously on the same image, repeatedly during acquisition. This microscopy, called ModLoc, allows us to experimentally improve the localization precision by a factor of 2.4 in one direction, compared to classical Gaussian fitting methods. A temporal study and an experimental demonstration both show that the short lifetimes of the molecules in blinking regimes impose a modulation frequency in the kilohertz range, which is beyond the reach of current cameras. A demodulation system operating at these frequencies would thus be necessary to take full advantage of this new localization approach. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20200299"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2020.0299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Structured illumination in single-molecule localization microscopy provides new information on the position of molecules and thus improves the localization precision compared to standard localization methods. Here, we used a time-shifted sinusoidal excitation pattern to modulate the fluorescence signal of the molecules whose position information is carried by the phase and recovered by synchronous demodulation. We designed two flexible fast demodulation systems located upstream of the camera, allowing us to overcome the limiting camera acquisition frequency and thus to maximize the collection of photons in the demodulation process. The temporally modulated fluorescence signal was then sampled synchronously on the same image, repeatedly during acquisition. This microscopy, called ModLoc, allows us to experimentally improve the localization precision by a factor of 2.4 in one direction, compared to classical Gaussian fitting methods. A temporal study and an experimental demonstration both show that the short lifetimes of the molecules in blinking regimes impose a modulation frequency in the kilohertz range, which is beyond the reach of current cameras. A demodulation system operating at these frequencies would thus be necessary to take full advantage of this new localization approach. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.

增强单分子定位显微镜的时间调制激发。
与标准定位方法相比,单分子定位显微镜中的结构照明提供了分子位置的新信息,从而提高了定位精度。在这里,我们使用时移正弦激励模式来调制分子的荧光信号,其位置信息由相位携带并通过同步解调恢复。我们设计了两个位于相机上游的灵活快速解调系统,使我们能够克服相机采集频率的限制,从而在解调过程中最大限度地收集光子。然后在同一图像上同步采样暂时调制的荧光信号,在采集期间重复。与经典的高斯拟合方法相比,这种被称为ModLoc的显微镜使我们能够在一个方向上通过实验将定位精度提高2.4倍。一项时间研究和一个实验演示都表明,眨眼状态下分子的短寿命施加了千赫兹范围内的调制频率,这是目前摄像机无法达到的。因此,为了充分利用这种新的定位方法,在这些频率上工作的解调系统是必要的。本文是Theo Murphy会议议题“超分辨率结构照明显微镜(第二部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信