Xijing Yao, Qingli Yang, Yifei Wang, Chuanlin Bi, Han Du, Wei Wu
{"title":"Dual-Enzyme-Based Signal-Amplified Aptasensor for Zearalenone Detection by Using CRISPR-Cas12a and Nt.AlwI.","authors":"Xijing Yao, Qingli Yang, Yifei Wang, Chuanlin Bi, Han Du, Wei Wu","doi":"10.3390/foods11030487","DOIUrl":null,"url":null,"abstract":"<p><p>Zearalenone (ZEN) is harmful to animals and human beings, so it is very important to develop a rapid and sensitive method for the detection of ZEN. In this paper, we proposed a novel ZEN-monitoring method using two aptamers as recognition elements and EnGen LbaCas12a and Nt.AlwI nicking endonuclease as signal amplifiers. When ZEN was present, it bound to the aptamer Z0 and, Z1 was released into solution. The solution was then separated and the Nt.AlwI enzyme was added in order to form a nicking-enzyme cycle, thereby producing large amounts of the ssDNA Z3 for 30 min. The Z3 formed a CRISPR-Cas12a-Z3 complex with CRISPR-Cas12a, activated the trans-cleavage ability of Cas12a, cleaved the Quenched Reporter for 20 min, and underwent fluorescence recovery. The aptasensor was able to sensitively detect ZEN in the linear range of 1-1000 pg/mL, with a detection limit as low as 0.213 pg/mL. The detection time lasted for 2 h. Additionally, this detection technology can also be used to monitor other hazards.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834192/pdf/","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods11030487","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 13
Abstract
Zearalenone (ZEN) is harmful to animals and human beings, so it is very important to develop a rapid and sensitive method for the detection of ZEN. In this paper, we proposed a novel ZEN-monitoring method using two aptamers as recognition elements and EnGen LbaCas12a and Nt.AlwI nicking endonuclease as signal amplifiers. When ZEN was present, it bound to the aptamer Z0 and, Z1 was released into solution. The solution was then separated and the Nt.AlwI enzyme was added in order to form a nicking-enzyme cycle, thereby producing large amounts of the ssDNA Z3 for 30 min. The Z3 formed a CRISPR-Cas12a-Z3 complex with CRISPR-Cas12a, activated the trans-cleavage ability of Cas12a, cleaved the Quenched Reporter for 20 min, and underwent fluorescence recovery. The aptasensor was able to sensitively detect ZEN in the linear range of 1-1000 pg/mL, with a detection limit as low as 0.213 pg/mL. The detection time lasted for 2 h. Additionally, this detection technology can also be used to monitor other hazards.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds