Shu-Fang Fu, Xiang-Guang Wang, Yu-Qi Zhang, Sheng Zhou, Xuan-Zhang Wang
{"title":"Spin-splitting in a reflective beam off an antiferromagnetic surface.","authors":"Shu-Fang Fu, Xiang-Guang Wang, Yu-Qi Zhang, Sheng Zhou, Xuan-Zhang Wang","doi":"10.1364/OE.435243","DOIUrl":null,"url":null,"abstract":"<p><p>A linearly-polarized radiation can be considered as the superposition of two circularly-polarized components with the same propagating direction and opposite spins. We investigated the splitting between the two spin-components in the reflective beam off the antiferromagnetic surface. The gyromagnetism and surface impedance mismatch cause the difference between the spatial shifts of the two spin-components, i.e., the spin-splitting. We analytically achieved the in- and out-plane shift-expressions of either spin-component for two typical linearly-polarized incident beams (i.e., the p- and s-incidences). In the case of no gyromagnetism, we obtained very simple shift-expressions, which indicate a key role played by the gyromagnetism or the surface impedance-mismatch in spin-splitting. Based on a FeF<sub>2</sub> crystal, the spin-splitting distance was calculated. The spin-splitting distance is much longer for the p-incidence than the s-incidence, and meanwhile the in-plane splitting distance is much larger than the out-plane one. The gyromagnetism plays a key role for the in-plane spin-splitting and the surface impedance-mismatch is a crucial factor for the out-plane spin-splitting distance. The results are useful for the manipulation of infrared radiations and infrared optical detection.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"29 24","pages":"39125-39136"},"PeriodicalIF":3.2000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.435243","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
A linearly-polarized radiation can be considered as the superposition of two circularly-polarized components with the same propagating direction and opposite spins. We investigated the splitting between the two spin-components in the reflective beam off the antiferromagnetic surface. The gyromagnetism and surface impedance mismatch cause the difference between the spatial shifts of the two spin-components, i.e., the spin-splitting. We analytically achieved the in- and out-plane shift-expressions of either spin-component for two typical linearly-polarized incident beams (i.e., the p- and s-incidences). In the case of no gyromagnetism, we obtained very simple shift-expressions, which indicate a key role played by the gyromagnetism or the surface impedance-mismatch in spin-splitting. Based on a FeF2 crystal, the spin-splitting distance was calculated. The spin-splitting distance is much longer for the p-incidence than the s-incidence, and meanwhile the in-plane splitting distance is much larger than the out-plane one. The gyromagnetism plays a key role for the in-plane spin-splitting and the surface impedance-mismatch is a crucial factor for the out-plane spin-splitting distance. The results are useful for the manipulation of infrared radiations and infrared optical detection.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.