{"title":"Kinetic Characterization of Human Histone Deacetylase 8 With Medium-Chain Fatty Acyl Lysine.","authors":"Harrison Yoo, Gregory A Polsinelli","doi":"10.1177/25168657211065685","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylases (HDACs) catalyze the removal of Ɛ-acetyl-lysine residues of histones via hydrolysis. Removal of acetyl groups results in condensation of chromatin structure and alteration of gene expression by repression. HDACs are considered targets for the treatment of cancer due to their role in regulating transcription. HDAC8 inhibition may be an important anti-proliferative factor for histone deacetylase inhibitors on cancer cells and may give rise to the progression of apoptosis. HDAC8 activity was analyzed with various peptides where the target lysine is modified with medium-chain fatty acyl group. Kinetic data were determined for each p53 peptide substrate. The results suggest that there was HDAC8 deacetylase activity on peptide substrate as well as deacylase activity with acylated peptide substrate variants. HDAC8 inhibition by hexanoic and decanoic acid was also examined. The <i>K<sub>i</sub></i> for hexanoic and decanoic acid were determined to be 2.35 ± 0.341 and 4.48 ± 0.221 mM, respectively.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"25168657211065685"},"PeriodicalIF":4.3000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ff/82/10.1177_25168657211065685.PMC8669121.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/25168657211065685","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Histone deacetylases (HDACs) catalyze the removal of Ɛ-acetyl-lysine residues of histones via hydrolysis. Removal of acetyl groups results in condensation of chromatin structure and alteration of gene expression by repression. HDACs are considered targets for the treatment of cancer due to their role in regulating transcription. HDAC8 inhibition may be an important anti-proliferative factor for histone deacetylase inhibitors on cancer cells and may give rise to the progression of apoptosis. HDAC8 activity was analyzed with various peptides where the target lysine is modified with medium-chain fatty acyl group. Kinetic data were determined for each p53 peptide substrate. The results suggest that there was HDAC8 deacetylase activity on peptide substrate as well as deacylase activity with acylated peptide substrate variants. HDAC8 inhibition by hexanoic and decanoic acid was also examined. The Ki for hexanoic and decanoic acid were determined to be 2.35 ± 0.341 and 4.48 ± 0.221 mM, respectively.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico