A review on architecture with fungal biomaterials: the desired and the feasible.

Q1 Agricultural and Biological Sciences
Dimitra Almpani-Lekka, Sven Pfeiffer, Christian Schmidts, Seung-Il Seo
{"title":"A review on architecture with fungal biomaterials: the desired and the feasible.","authors":"Dimitra Almpani-Lekka,&nbsp;Sven Pfeiffer,&nbsp;Christian Schmidts,&nbsp;Seung-Il Seo","doi":"10.1186/s40694-021-00124-5","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal biomaterials are becoming increasingly popular in the fields of architecture and design, with a significant bloom of projects having taken place during the last 10 years. Using mycelium as a stabilizing compound for fibers from agricultural waste, new building elements can be manufactured according to the circular economy model and be used for architectural construction to transform the building industry towards an increased environmental and economic sustainability. Simultaneously, research on those materials and especially fungal biocomposites is producing knowledge that allows for the materials themselves to inspire and transform the architectural design. Novel research on those materials is not only allowing for their use as construction materials, but it inspires and affects the architectural design process through the discovery and variation of the materials' properties. Today, many interdisciplinary teams are working on this emerging field to integrate fungal biocomposites in the construction industry and to merge science, art, and architecture responsibly.This study provides an overview of the progress that has been made in this field during the last 10 years, focusing on six works that are presented in more detail. Those six works are spaces at an architectural scale which showcase unique elements and innovative aspects for the use of fungal biomaterials in architecture. Each work has followed different design strategies, different fabrication methods, or different post-processing methods. All of them together have produced significant technical knowledge as well as a cultural impact for the field of architecture but also for the field of fungal biotechnology.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8603577/pdf/","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40694-021-00124-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 26

Abstract

Fungal biomaterials are becoming increasingly popular in the fields of architecture and design, with a significant bloom of projects having taken place during the last 10 years. Using mycelium as a stabilizing compound for fibers from agricultural waste, new building elements can be manufactured according to the circular economy model and be used for architectural construction to transform the building industry towards an increased environmental and economic sustainability. Simultaneously, research on those materials and especially fungal biocomposites is producing knowledge that allows for the materials themselves to inspire and transform the architectural design. Novel research on those materials is not only allowing for their use as construction materials, but it inspires and affects the architectural design process through the discovery and variation of the materials' properties. Today, many interdisciplinary teams are working on this emerging field to integrate fungal biocomposites in the construction industry and to merge science, art, and architecture responsibly.This study provides an overview of the progress that has been made in this field during the last 10 years, focusing on six works that are presented in more detail. Those six works are spaces at an architectural scale which showcase unique elements and innovative aspects for the use of fungal biomaterials in architecture. Each work has followed different design strategies, different fabrication methods, or different post-processing methods. All of them together have produced significant technical knowledge as well as a cultural impact for the field of architecture but also for the field of fungal biotechnology.

Abstract Image

Abstract Image

Abstract Image

真菌生物材料建筑研究进展:需要与可行。
真菌生物材料在建筑和设计领域越来越受欢迎,在过去的10年里出现了大量的项目。利用菌丝体作为农业废弃物纤维的稳定化合物,可以根据循环经济模型制造新的建筑元素,并用于建筑施工,使建筑行业朝着更环保和经济可持续性的方向转变。同时,对这些材料,特别是真菌生物复合材料的研究正在产生知识,使材料本身能够激发和改变建筑设计。对这些材料的新研究不仅允许它们作为建筑材料使用,而且通过材料特性的发现和变化来启发和影响建筑设计过程。今天,许多跨学科的团队正在研究这一新兴领域,将真菌生物复合材料整合到建筑行业中,并负责任地融合科学、艺术和建筑。本研究概述了近10年来在该领域取得的进展,重点介绍了更详细的六项工作。这六件作品是建筑尺度的空间,展示了在建筑中使用真菌生物材料的独特元素和创新方面。每件作品都遵循不同的设计策略、不同的制作方法或不同的后处理方法。所有这些共同产生了重要的技术知识,并对建筑领域和真菌生物技术领域产生了文化影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fungal Biology and Biotechnology
Fungal Biology and Biotechnology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
10.20
自引率
0.00%
发文量
17
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信