{"title":"<i>POU5F1</i> Protein and Gene Expression Analysis in Neonate and Adult Mouse Testicular Germ Cells by Immunohistochemistry and Immunocytochemistry.","authors":"Parisa Niknejad, Hossein Azizi, Kiana Sojoudi","doi":"10.1089/cell.2021.0108","DOIUrl":null,"url":null,"abstract":"<p><p>POU5F1 (POU class 5 homeobox 1) is a transcription factor that is critically involved in the self-renewal of undifferentiated embryonic stem cells. In this present study, we have developed our study to analyze the expression of the POU5F1 in the neonatal and adult mice testis section and isolated spermatogonial stem cells (SSCs). We also examine POU5F1 protein localization by three various kinds of antibodies. In this experimental research, to enhance our understanding of the POU5F1 expression levels, protein localization, and function in testicular germ cell, we used immunohistochemistry, immunocytochemistry, and Fluidigm real-time polymerase chain reaction (RT-PCR) analysis in the mouse testis section and neonatal and adult SSCs, and also we used protein-protein network analysis and gene enrichment analysis for genes involved in testicular development. Counting POU5F1-positive cells represented significantly higher expression (<i>p</i> < 0.05) of POU5F1 in the adult testis in comparison to the neonate. Finally, Fluidigm RT-PCR showed a significant expression (<i>p</i> < 0.05) level of germ cells gene <i>POU5F1</i> in neonate SSCs (1-2 week) than 16-24 week SSCs. The illustrated results identify POU5F1 as a necessary transcription factor of testicular germ cells and can be supportive for the investigation of the development and differentiation of SSCs.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"23 6","pages":"349-358"},"PeriodicalIF":1.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2021.0108","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
POU5F1 (POU class 5 homeobox 1) is a transcription factor that is critically involved in the self-renewal of undifferentiated embryonic stem cells. In this present study, we have developed our study to analyze the expression of the POU5F1 in the neonatal and adult mice testis section and isolated spermatogonial stem cells (SSCs). We also examine POU5F1 protein localization by three various kinds of antibodies. In this experimental research, to enhance our understanding of the POU5F1 expression levels, protein localization, and function in testicular germ cell, we used immunohistochemistry, immunocytochemistry, and Fluidigm real-time polymerase chain reaction (RT-PCR) analysis in the mouse testis section and neonatal and adult SSCs, and also we used protein-protein network analysis and gene enrichment analysis for genes involved in testicular development. Counting POU5F1-positive cells represented significantly higher expression (p < 0.05) of POU5F1 in the adult testis in comparison to the neonate. Finally, Fluidigm RT-PCR showed a significant expression (p < 0.05) level of germ cells gene POU5F1 in neonate SSCs (1-2 week) than 16-24 week SSCs. The illustrated results identify POU5F1 as a necessary transcription factor of testicular germ cells and can be supportive for the investigation of the development and differentiation of SSCs.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.