R Thenmozhi, S Shridevi, Sachi Nandan Mohanty, Vicente García-Díaz, Deepak Gupta, Prayag Tiwari, Mohammad Shorfuzzaman
{"title":"Attribute-Based Adaptive Homomorphic Encryption for Big Data Security.","authors":"R Thenmozhi, S Shridevi, Sachi Nandan Mohanty, Vicente García-Díaz, Deepak Gupta, Prayag Tiwari, Mohammad Shorfuzzaman","doi":"10.1089/big.2021.0176","DOIUrl":null,"url":null,"abstract":"<p><p>There is a drastic increase in Internet usage across the globe, thanks to mobile phone penetration. This extreme Internet usage generates huge volumes of data, in other terms, big data. Security and privacy are the main issues to be considered in big data management. Hence, in this article, Attribute-based Adaptive Homomorphic Encryption (AAHE) is developed to enhance the security of big data. In the proposed methodology, Oppositional Based Black Widow Optimization (OBWO) is introduced to select the optimal key parameters by following the AAHE method. By considering oppositional function, Black Widow Optimization (BWO) convergence analysis was enhanced. The proposed methodology has different processes, namely, process setup, encryption, and decryption processes. The researcher evaluated the proposed methodology with non-abelian rings and the homomorphism process in ciphertext format. Further, it is also utilized in improving one-way security related to the conjugacy examination issue. Afterward, homomorphic encryption is developed to secure the big data. The study considered two types of big data such as adult datasets and anonymous Microsoft web datasets to validate the proposed methodology. With the help of performance metrics such as encryption time, decryption time, key size, processing time, downloading, and uploading time, the proposed method was evaluated and compared against conventional cryptography techniques such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC). Further, the key generation process was also compared against conventional methods such as BWO, Particle Swarm Optimization (PSO), and Firefly Algorithm (FA). The results established that the proposed method is supreme than the compared methods and can be applied in real time in near future.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0176","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
There is a drastic increase in Internet usage across the globe, thanks to mobile phone penetration. This extreme Internet usage generates huge volumes of data, in other terms, big data. Security and privacy are the main issues to be considered in big data management. Hence, in this article, Attribute-based Adaptive Homomorphic Encryption (AAHE) is developed to enhance the security of big data. In the proposed methodology, Oppositional Based Black Widow Optimization (OBWO) is introduced to select the optimal key parameters by following the AAHE method. By considering oppositional function, Black Widow Optimization (BWO) convergence analysis was enhanced. The proposed methodology has different processes, namely, process setup, encryption, and decryption processes. The researcher evaluated the proposed methodology with non-abelian rings and the homomorphism process in ciphertext format. Further, it is also utilized in improving one-way security related to the conjugacy examination issue. Afterward, homomorphic encryption is developed to secure the big data. The study considered two types of big data such as adult datasets and anonymous Microsoft web datasets to validate the proposed methodology. With the help of performance metrics such as encryption time, decryption time, key size, processing time, downloading, and uploading time, the proposed method was evaluated and compared against conventional cryptography techniques such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC). Further, the key generation process was also compared against conventional methods such as BWO, Particle Swarm Optimization (PSO), and Firefly Algorithm (FA). The results established that the proposed method is supreme than the compared methods and can be applied in real time in near future.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.