Ventrolateral ventromedial hypothalamic nucleus GABA neuron adaptation to recurring Hypoglycemia correlates with up-regulated 5'-AMP-activated protein kinase activity.

IF 3.1 Q2 NEUROSCIENCES
AIMS Neuroscience Pub Date : 2021-09-03 eCollection Date: 2021-01-01 DOI:10.3934/Neuroscience.2021027
Abdulrahman Alhamyani, Prabhat R Napit, Haider Ali, Mostafa Mh Ibrahim, Karen P Briski
{"title":"Ventrolateral ventromedial hypothalamic nucleus GABA neuron adaptation to recurring Hypoglycemia correlates with up-regulated 5'-AMP-activated protein kinase activity.","authors":"Abdulrahman Alhamyani, Prabhat R Napit, Haider Ali, Mostafa Mh Ibrahim, Karen P Briski","doi":"10.3934/Neuroscience.2021027","DOIUrl":null,"url":null,"abstract":"<p><p>Gamma-aminobutyric acid (GABA) acts on ventromedial hypothalamic targets to suppress counter-regulatory hormone release, thereby lowering blood glucose. Maladaptive up-regulation of GABA signaling is implicated in impaired counter-regulatory outflow during recurring insulin-induced hypoglycemia (RIIH). Ventromedial hypothalamic nucleus (VMN) GABAergic neurons express the sensitive energy gauge 5'-AMP-activated protein kinase (AMPK). Current research used high-neuroanatomical resolution single-cell microdissection tools to address the premise that GABAergic cells in the VMNvl, the primary location of 'glucose-excited' metabolic-sensory neurons in the VMN, exhibit attenuated sensor activation during RIIH. Data show that during acute hypoglycemia, VMNvl glutamate decarboxylase<sub>65/67</sub> (GAD)-immunoreactive neurons maintain energy stability, yet a regional subset of this population exhibited decreased GAD content. GABA neurons located along the rostrocaudal length of the VMNvl acclimated to RIIH through a shift to negative energy imbalance, e.g. increased phosphoAMPK expression, alongside amplification/gain of inhibition of GAD profiles. Acquisition of negative GAD sensitivity may involve altered cellular receptivity to noradrenergic input via α<sub>2</sub>-AR and/or β<sub>1</sub>-AR. Suppression of VMNvl GABA nerve cell signaling during RIIH may differentiate this neuroanatomical population from other, possibly non-metabolic-sensory GABA neurons in the MBH. Data here also provide novel evidence that VMNvl GABA neurons are direct targets of glucocorticoid control, and show that glucocorticoid receptors may inhibit RIIH-associated GAD expression in rostral VMNvl GABAergic cells through AMPK-independent mechanisms.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"8 4","pages":"510-525"},"PeriodicalIF":3.1000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2021027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Gamma-aminobutyric acid (GABA) acts on ventromedial hypothalamic targets to suppress counter-regulatory hormone release, thereby lowering blood glucose. Maladaptive up-regulation of GABA signaling is implicated in impaired counter-regulatory outflow during recurring insulin-induced hypoglycemia (RIIH). Ventromedial hypothalamic nucleus (VMN) GABAergic neurons express the sensitive energy gauge 5'-AMP-activated protein kinase (AMPK). Current research used high-neuroanatomical resolution single-cell microdissection tools to address the premise that GABAergic cells in the VMNvl, the primary location of 'glucose-excited' metabolic-sensory neurons in the VMN, exhibit attenuated sensor activation during RIIH. Data show that during acute hypoglycemia, VMNvl glutamate decarboxylase65/67 (GAD)-immunoreactive neurons maintain energy stability, yet a regional subset of this population exhibited decreased GAD content. GABA neurons located along the rostrocaudal length of the VMNvl acclimated to RIIH through a shift to negative energy imbalance, e.g. increased phosphoAMPK expression, alongside amplification/gain of inhibition of GAD profiles. Acquisition of negative GAD sensitivity may involve altered cellular receptivity to noradrenergic input via α2-AR and/or β1-AR. Suppression of VMNvl GABA nerve cell signaling during RIIH may differentiate this neuroanatomical population from other, possibly non-metabolic-sensory GABA neurons in the MBH. Data here also provide novel evidence that VMNvl GABA neurons are direct targets of glucocorticoid control, and show that glucocorticoid receptors may inhibit RIIH-associated GAD expression in rostral VMNvl GABAergic cells through AMPK-independent mechanisms.

Abstract Image

Abstract Image

Abstract Image

腹外侧下丘脑核GABA神经元对复发性低血糖的适应与5'-AMP激活的蛋白激酶活性上调有关。
γ-氨基丁酸(GABA)作用于下丘脑腹内侧靶点,抑制反调节激素的释放,从而降低血糖。在胰岛素诱发的反复低血糖(RIIH)中,GABA 信号的不适应性上调与反调节外流受损有关。下丘脑中内侧核(VMN)GABA能神经元表达敏感的能量调节因子5'-AMPK。目前的研究使用了高神经解剖分辨率的单细胞显微切割工具,以解决VMNvl(VMN中 "葡萄糖激发 "代谢感觉神经元的主要位置)中的GABA能细胞在RIIH期间表现出传感器激活减弱的前提。数据显示,在急性低血糖期间,VMNvl 谷氨酸脱羧酶 65/67 (GAD) 免疫反应神经元能保持能量稳定,但该群体的一个区域亚群显示出 GAD 含量下降。沿着 VMNvl 的喙尾长度分布的 GABA 神经元适应 RIIH 的方式是转向负能量失衡,例如增加磷酸-AMPK 的表达,同时扩大/增加 GAD 的抑制。对 GAD 负敏感性的获得可能涉及细胞对通过 α2-AR 和/或 β1-AR 输入的去甲肾上腺素能的接受能力的改变。在 RIIH 期间抑制 VMNvl GABA 神经细胞信号传导可能会将这一神经解剖群与 MBH 中其他可能是非代谢感觉型 GABA 神经元区分开来。本文的数据还提供了新的证据,证明 VMNvl GABA 神经元是糖皮质激素控制的直接靶点,并表明糖皮质激素受体可通过 AMPK 依赖性机制抑制喙 VMNvl GABA 能细胞中与 RIIH 相关的 GAD 表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Neuroscience
AIMS Neuroscience NEUROSCIENCES-
CiteScore
4.20
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信