Improved anti-organic fouling and antibacterial properties of PVDF ultrafiltration membrane by one-step grafting imidazole-functionalized graphene oxide

IF 8.1 1区 工程技术 Q1 MATERIALS SCIENCE, BIOMATERIALS
Chengbao Geng , Lu-an Fan , Hongyan Niu , Lijia Liu , Fangbo Zhao , Jiaming Zhang , Hongxing Dong , Shuili Yu
{"title":"Improved anti-organic fouling and antibacterial properties of PVDF ultrafiltration membrane by one-step grafting imidazole-functionalized graphene oxide","authors":"Chengbao Geng ,&nbsp;Lu-an Fan ,&nbsp;Hongyan Niu ,&nbsp;Lijia Liu ,&nbsp;Fangbo Zhao ,&nbsp;Jiaming Zhang ,&nbsp;Hongxing Dong ,&nbsp;Shuili Yu","doi":"10.1016/j.msec.2021.112517","DOIUrl":null,"url":null,"abstract":"<div><p>At present, membrane fouling is a thorny issue that limits the development of polyvinylidene fluoride (PVDF) composite membrane, which seriously affects its separation performance and service lifespan. Herein, an imidazole-functionalized graphene oxide (Im-GO) with hydrophilicity and antibacterial performance was synthesized, and it was used as a modifier to improve the anti-organic fouling and antibacterial properties of PVDF membrane. The anti-organic fouling test showed that the maximum flux recovery ratios against bovine serum albumin and humic acid were 88.9% and 94.5%, respectively. Conspicuously, the grafted imidazole groups could effectively prevent the bacteria from growing on the membrane surface. It was gratifying that the antibacterial modifier Im-GO was almost not lost from the hybrid membranes even by the ultrasonic treatment, which was different from the conventional release-killing antibacterial agents. Owing to the long-term anti-organic fouling and antibacterial properties, Im-GO/PVDF hybrid membranes exhibit a great application potential in the fields of rough separation and concentration of biomedical products.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112517"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006573/pdfft?md5=d3363968fbec98994da36bbbe4fdf510&pid=1-s2.0-S0928493121006573-main.pdf","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006573","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 17

Abstract

At present, membrane fouling is a thorny issue that limits the development of polyvinylidene fluoride (PVDF) composite membrane, which seriously affects its separation performance and service lifespan. Herein, an imidazole-functionalized graphene oxide (Im-GO) with hydrophilicity and antibacterial performance was synthesized, and it was used as a modifier to improve the anti-organic fouling and antibacterial properties of PVDF membrane. The anti-organic fouling test showed that the maximum flux recovery ratios against bovine serum albumin and humic acid were 88.9% and 94.5%, respectively. Conspicuously, the grafted imidazole groups could effectively prevent the bacteria from growing on the membrane surface. It was gratifying that the antibacterial modifier Im-GO was almost not lost from the hybrid membranes even by the ultrasonic treatment, which was different from the conventional release-killing antibacterial agents. Owing to the long-term anti-organic fouling and antibacterial properties, Im-GO/PVDF hybrid membranes exhibit a great application potential in the fields of rough separation and concentration of biomedical products.

咪唑功能化氧化石墨烯一步接枝提高PVDF超滤膜的抗有机污染和抗菌性能
目前,膜污染是制约聚偏氟乙烯(PVDF)复合膜发展的一个棘手问题,严重影响了其分离性能和使用寿命。本文合成了一种具有亲水性和抗菌性能的咪唑功能化氧化石墨烯(Im-GO),并将其作为改性剂用于改善PVDF膜的抗有机污染和抗菌性能。抗有机污染试验表明,对牛血清白蛋白和腐植酸的最大通量回收率分别为88.9%和94.5%。接枝的咪唑基团可以有效地阻止细菌在膜表面的生长。令人欣慰的是,与传统的释放型抗菌剂不同,经超声处理后,复合膜上的抗菌改性剂Im-GO几乎没有丢失。Im-GO/PVDF杂化膜具有长期的抗有机污染和抗菌性能,在生物医药产品粗分离浓缩领域具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信