Superior low-immunogenicity of tilapia type I collagen based on unique secondary structure with single calcium binding motif over terrestrial mammals by inhibiting activation of DC intracellular Ca2+-mediated STIM1-Orai1/NF-кB pathway
{"title":"Superior low-immunogenicity of tilapia type I collagen based on unique secondary structure with single calcium binding motif over terrestrial mammals by inhibiting activation of DC intracellular Ca2+-mediated STIM1-Orai1/NF-кB pathway","authors":"Xiao Xu , Baiyan Sui , Xin Liu, Jiao Sun","doi":"10.1016/j.msec.2021.112503","DOIUrl":null,"url":null,"abstract":"<div><p>The reason for low- or non-immunogenicity of fish collagens is still in doubt, which, to some extent, bottlenecks their production and clinical application as biomaterials. Employing bovine or porcine type I collagens (BCI or PCI) as controls in this paper, we intensively investigate the influence of tilapia type I collagens (TCI) on the function of dendritic cells (DCs) and T cells. From bio-informatic analyses, as well as data obtained <em>in vitro</em> and <em>in vivo</em>, we find the variations in amino acid sequences lead to only one calcium binding motif in the secondary structure of TCI, compared with three in BCI or PCI. So when TCI (together with the minor amount of Ca<sup>2+</sup> they take) are uptaken, intracellular [Ca<sup>2+</sup>] remains stable and DCs maintain immature. On the contrary, those that have uptaken PCI or BCI experience not only increased [Ca<sup>2+</sup>] in the plasma but also phosphorylation of p65, resulting in activation of STIM1-Orai1/NF-кB signaling pathway and DC maturation. We fully prove our results on mice models, with no obvious cellular and humoral immune reactions. Our study primarily reveal the underlying mechanisms why TCI, different from BCI or PCI, show almost non-immunogenicity. Our findings are of great importance for the promotion and wide application of TCI in biomedicine.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112503"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006433/pdfft?md5=b762df33b4d7fdacabc052901eb30d2e&pid=1-s2.0-S0928493121006433-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006433","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
The reason for low- or non-immunogenicity of fish collagens is still in doubt, which, to some extent, bottlenecks their production and clinical application as biomaterials. Employing bovine or porcine type I collagens (BCI or PCI) as controls in this paper, we intensively investigate the influence of tilapia type I collagens (TCI) on the function of dendritic cells (DCs) and T cells. From bio-informatic analyses, as well as data obtained in vitro and in vivo, we find the variations in amino acid sequences lead to only one calcium binding motif in the secondary structure of TCI, compared with three in BCI or PCI. So when TCI (together with the minor amount of Ca2+ they take) are uptaken, intracellular [Ca2+] remains stable and DCs maintain immature. On the contrary, those that have uptaken PCI or BCI experience not only increased [Ca2+] in the plasma but also phosphorylation of p65, resulting in activation of STIM1-Orai1/NF-кB signaling pathway and DC maturation. We fully prove our results on mice models, with no obvious cellular and humoral immune reactions. Our study primarily reveal the underlying mechanisms why TCI, different from BCI or PCI, show almost non-immunogenicity. Our findings are of great importance for the promotion and wide application of TCI in biomedicine.
期刊介绍:
Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.