Jiamin Zhang , Yingnan Zhu , Yumin Zhang , Wenjing Lin , Jia Ke , Jianfeng Liu , Lei Zhang , Jinjian Liu
{"title":"A balanced charged hydrogel with anti-biofouling and antioxidant properties for treatment of irradiation-induced skin injury","authors":"Jiamin Zhang , Yingnan Zhu , Yumin Zhang , Wenjing Lin , Jia Ke , Jianfeng Liu , Lei Zhang , Jinjian Liu","doi":"10.1016/j.msec.2021.112538","DOIUrl":null,"url":null,"abstract":"<div><p>Skin injury caused by large doses of ionizing radiation is the common and severe side effect of radiotherapy. However, its therapeutic efficacy is always hindered by early reactive oxygen species generation, repetitive inflammatory microenvironment and bacterial infection risk. Herein, we report an anti-biofouling hydrogel with anti-inflammation and anti-oxidative properties for the treatment of irradiation-induced skin injury. The anti-biofouling hydrogel can be achieved by balancing oppositely charged alginate, hyaluronic acid (HA) and polylysine (PLL) at the optimal ratio, which effectively resist protein and bacterial adhesion, and evades immune response. Moreover, curcumin and epigallocatechin gallate (EGCG) can be facially encapsulated and substantially released from the hydrogel. Results showed that the resulting AHP-Cur/EGCG hydrogel can significantly weaken the development of skin injury and accelerate its healing process by alleviating inflammation, scavenging ROS and promoting angiogenesis. Therefore, the findings presented in this work provide an effective strategy for clinical management and treatment of ionizing radiation-induced skin injury.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112538"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006780/pdfft?md5=9caa1fdf33dd982f4a04709962360902&pid=1-s2.0-S0928493121006780-main.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006780","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 12
Abstract
Skin injury caused by large doses of ionizing radiation is the common and severe side effect of radiotherapy. However, its therapeutic efficacy is always hindered by early reactive oxygen species generation, repetitive inflammatory microenvironment and bacterial infection risk. Herein, we report an anti-biofouling hydrogel with anti-inflammation and anti-oxidative properties for the treatment of irradiation-induced skin injury. The anti-biofouling hydrogel can be achieved by balancing oppositely charged alginate, hyaluronic acid (HA) and polylysine (PLL) at the optimal ratio, which effectively resist protein and bacterial adhesion, and evades immune response. Moreover, curcumin and epigallocatechin gallate (EGCG) can be facially encapsulated and substantially released from the hydrogel. Results showed that the resulting AHP-Cur/EGCG hydrogel can significantly weaken the development of skin injury and accelerate its healing process by alleviating inflammation, scavenging ROS and promoting angiogenesis. Therefore, the findings presented in this work provide an effective strategy for clinical management and treatment of ionizing radiation-induced skin injury.
期刊介绍:
Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.