Mg-Fe layered double hydroxides modified titanium enhanced the adhesion of human gingival fibroblasts through regulation of local pH level

IF 8.1 1区 工程技术 Q1 MATERIALS SCIENCE, BIOMATERIALS
Yijia Yin , Linjia Jian , Baoe Li , Chunyong Liang , Xianglong Han , Xuefeng Zhao , Donghui Wang
{"title":"Mg-Fe layered double hydroxides modified titanium enhanced the adhesion of human gingival fibroblasts through regulation of local pH level","authors":"Yijia Yin ,&nbsp;Linjia Jian ,&nbsp;Baoe Li ,&nbsp;Chunyong Liang ,&nbsp;Xianglong Han ,&nbsp;Xuefeng Zhao ,&nbsp;Donghui Wang","doi":"10.1016/j.msec.2021.112485","DOIUrl":null,"url":null,"abstract":"<div><p>The durability of dental implants is closely related to osseointegration and surrounding soft tissue sealing. Appropriate local pH favors fibroblasts adhesion and contributes to soft tissue sealing. Layered double hydroxides (LDHs) are characterized by adjustable alkalinity, offering a possibility to investigate the influence of pH on cellular behaviors. Herein, we fabricated Mg<img>Fe LDHs modified titanium. During calcination, the local pH value of LDHs increase, without altering other physics and chemical properties via OH<sup>−</sup> exchange mechanism. In vitro studies showed that LDHs films calcined at 250 °C for 2 h provide a local pH of 10.17, which promote early adhesion, proliferation, and type I collagen expression of human gingival fibroblasts (hGFs) through the formation of focal adhesion complex and activation of focal adhesion kinase related signaling pathways. In conclusion, endowing the titanium surface with appropriate alkalinity by Mg<img>Fe LDHs films enhances the adhesion of hGFs, providing a new strategy of designing multifunctional biomaterials for soft tissue sealing around dental implants.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112485"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006251/pdfft?md5=86d4d7d83df68f4a665221d5c5c607cc&pid=1-s2.0-S0928493121006251-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006251","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

The durability of dental implants is closely related to osseointegration and surrounding soft tissue sealing. Appropriate local pH favors fibroblasts adhesion and contributes to soft tissue sealing. Layered double hydroxides (LDHs) are characterized by adjustable alkalinity, offering a possibility to investigate the influence of pH on cellular behaviors. Herein, we fabricated MgFe LDHs modified titanium. During calcination, the local pH value of LDHs increase, without altering other physics and chemical properties via OH exchange mechanism. In vitro studies showed that LDHs films calcined at 250 °C for 2 h provide a local pH of 10.17, which promote early adhesion, proliferation, and type I collagen expression of human gingival fibroblasts (hGFs) through the formation of focal adhesion complex and activation of focal adhesion kinase related signaling pathways. In conclusion, endowing the titanium surface with appropriate alkalinity by MgFe LDHs films enhances the adhesion of hGFs, providing a new strategy of designing multifunctional biomaterials for soft tissue sealing around dental implants.

Abstract Image

镁铁层状双氢氧化物修饰钛通过调节局部pH水平增强人牙龈成纤维细胞的粘附
种植体的耐久性与种植体的骨整合和周围软组织的密封密切相关。适当的局部pH有利于成纤维细胞粘附,有助于软组织密封。层状双氢氧化物(LDHs)的特点是碱度可调,为研究pH对细胞行为的影响提供了可能。本文制备了MgFe LDHs改性钛。在煅烧过程中,LDHs的局部pH值升高,但没有通过OH−交换机制改变其他物理和化学性质。体外研究表明,经250℃煅烧2 h的LDHs膜局部pH值为10.17,通过形成局灶黏附复合物和激活局灶黏附激酶相关信号通路,促进人牙龈成纤维细胞(hGFs)的早期黏附、增殖和I型胶原的表达。综上所述,通过MgFe LDHs膜赋予钛表面适当的碱度,增强了hGFs的粘附性,为设计种植体周围软组织密封的多功能生物材料提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信