Elastomeric electrolytes for high-energy solid-state lithium batteries

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2022-01-12 DOI:10.1038/s41586-021-04209-4
Michael J. Lee, Junghun Han, Kyungbin Lee, Young Jun Lee, Byoung Gak Kim, Kyu-Nam Jung, Bumjoon J. Kim, Seung Woo Lee
{"title":"Elastomeric electrolytes for high-energy solid-state lithium batteries","authors":"Michael J. Lee, Junghun Han, Kyungbin Lee, Young Jun Lee, Byoung Gak Kim, Kyu-Nam Jung, Bumjoon J. Kim, Seung Woo Lee","doi":"10.1038/s41586-021-04209-4","DOIUrl":null,"url":null,"abstract":"The use of lithium metal anodes in solid-state batteries has emerged as one of the most promising technologies for replacing conventional lithium-ion batteries1,2. Solid-state electrolytes are a key enabling technology for the safe operation of lithium metal batteries as they suppress the uncontrolled growth of lithium dendrites. However, the mechanical properties and electrochemical performance of current solid-state electrolytes do not meet the requirements for practical applications of lithium metal batteries. Here we report a class of elastomeric solid-state electrolytes with a three-dimensional interconnected plastic crystal phase. The elastomeric electrolytes show a combination of mechanical robustness, high ionic conductivity, low interfacial resistance and high lithium-ion transference number. The in situ-formed elastomer electrolyte on copper foils accommodates volume changes for prolonged lithium plating and stripping processes with a Coulombic efficiency of 100.0 per cent. Moreover, the elastomer electrolytes enable stable operation of the full cells under constrained conditions of a limited lithium source, a thin electrolyte and a high-loading LiNi0.83Mn0.06Co0.11O2 cathode at a high voltage of 4.5 volts at ambient temperature, delivering a high specific energy exceeding 410 watt-hours per kilogram of electrode plus electrolyte. The elastomeric electrolyte system presents a powerful strategy for enabling stable operation of high-energy, solid-state lithium batteries. An elastomeric solid-state electrolyte shows desirable mechanical properties and high electrochemical stability, and is used to demonstrate a high-energy solid-state lithium battery at ambient temperature.","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-021-04209-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 135

Abstract

The use of lithium metal anodes in solid-state batteries has emerged as one of the most promising technologies for replacing conventional lithium-ion batteries1,2. Solid-state electrolytes are a key enabling technology for the safe operation of lithium metal batteries as they suppress the uncontrolled growth of lithium dendrites. However, the mechanical properties and electrochemical performance of current solid-state electrolytes do not meet the requirements for practical applications of lithium metal batteries. Here we report a class of elastomeric solid-state electrolytes with a three-dimensional interconnected plastic crystal phase. The elastomeric electrolytes show a combination of mechanical robustness, high ionic conductivity, low interfacial resistance and high lithium-ion transference number. The in situ-formed elastomer electrolyte on copper foils accommodates volume changes for prolonged lithium plating and stripping processes with a Coulombic efficiency of 100.0 per cent. Moreover, the elastomer electrolytes enable stable operation of the full cells under constrained conditions of a limited lithium source, a thin electrolyte and a high-loading LiNi0.83Mn0.06Co0.11O2 cathode at a high voltage of 4.5 volts at ambient temperature, delivering a high specific energy exceeding 410 watt-hours per kilogram of electrode plus electrolyte. The elastomeric electrolyte system presents a powerful strategy for enabling stable operation of high-energy, solid-state lithium batteries. An elastomeric solid-state electrolyte shows desirable mechanical properties and high electrochemical stability, and is used to demonstrate a high-energy solid-state lithium battery at ambient temperature.

Abstract Image

用于高能固态锂电池的弹性电解质
在固态电池中使用锂金属阳极已成为替代传统锂离子电池最有前途的技术之一1,2。固态电解质可抑制锂枝晶的失控生长,是锂金属电池安全运行的关键技术。然而,目前固态电解质的机械性能和电化学性能并不能满足锂金属电池实际应用的要求。在此,我们报告了一类具有三维互连塑性晶体相的弹性固态电解质。这种弹性电解质集机械坚固性、高离子电导率、低界面电阻和高锂离子传输数于一身。在铜箔上原位形成的弹性电解质能适应长时间镀锂和剥离过程中的体积变化,库仑效率高达 100.0%。此外,在有限的锂源、薄电解质和高负载 LiNi0.83Mn0.06Co0.11O2阴极的限制条件下,弹性电解质可使全电池在环境温度下 4.5  伏特的高电压下稳定运行,每公斤电极 加 电解质可提供超过 410  瓦时的高比能量。弹性电解质系统为高能固态锂电池的稳定运行提供了强有力的策略。弹性固态电解质显示出理想的机械性能和较高的电化学稳定性,并被用于演示环境温度下的高能固态锂电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信