Olugbenga S. Michael , Olubayode Bamidele , Pamela Ogheneovo , Temitope A. Ariyo , Lawrence D. Adedayo , Olufemi I. Oluranti , Elizabeth O. Soladoye , Charles O. Adetunji , Funmileyi O. Awobajo
{"title":"Watermelon rind ethanol extract exhibits hepato-renal protection against lead induced-impaired antioxidant defenses in male Wistar rats","authors":"Olugbenga S. Michael , Olubayode Bamidele , Pamela Ogheneovo , Temitope A. Ariyo , Lawrence D. Adedayo , Olufemi I. Oluranti , Elizabeth O. Soladoye , Charles O. Adetunji , Funmileyi O. Awobajo","doi":"10.1016/j.crphys.2021.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Lead acetate associated tissue injury has been linked to altered antioxidant defenses, hyperuricemia and inflammation. We hypothesized that watermelon rind extract, would ameliorate lead acetate-induced hepato-renal injury.</p><p>Thirty Male Wistar rats received distilled water, lead acetate (Pb; 5 mg/kg) with or without watermelon rind extract (WM; 400 mg/kg; WM + Pb; 15 days of WM pretreatment); Pb + WM (15 days of WM post treatment) and simultaneous treatment (WM-Pb) for 30 days.</p><p>Lead toxicity led to elevated serum malondialdehyde, creatinine, urea, uric acid, lactate dehydrogenase, liver injury enzymes, as well as decreased body weight. Decreased serum levels of reduced glutathione, nitric oxide, total protein and glutathione peroxidase activity was also observed. However, these alterations were ameliorated by watermelon rind extract in lead acetate-treated rats.</p><p>Watermelon rind ethanol extract protects against lead acetate-induced hepato-renal injury through improved antioxidant defenses at least in part, via uric acid/nitric oxide-dependent pathway signifying the health benefits of this agricultural waste and a potential for waste recycling while limiting environmental pollution.</p></div>","PeriodicalId":72753,"journal":{"name":"Current research in physiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/49/main.PMC8607130.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665944121000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Lead acetate associated tissue injury has been linked to altered antioxidant defenses, hyperuricemia and inflammation. We hypothesized that watermelon rind extract, would ameliorate lead acetate-induced hepato-renal injury.
Thirty Male Wistar rats received distilled water, lead acetate (Pb; 5 mg/kg) with or without watermelon rind extract (WM; 400 mg/kg; WM + Pb; 15 days of WM pretreatment); Pb + WM (15 days of WM post treatment) and simultaneous treatment (WM-Pb) for 30 days.
Lead toxicity led to elevated serum malondialdehyde, creatinine, urea, uric acid, lactate dehydrogenase, liver injury enzymes, as well as decreased body weight. Decreased serum levels of reduced glutathione, nitric oxide, total protein and glutathione peroxidase activity was also observed. However, these alterations were ameliorated by watermelon rind extract in lead acetate-treated rats.
Watermelon rind ethanol extract protects against lead acetate-induced hepato-renal injury through improved antioxidant defenses at least in part, via uric acid/nitric oxide-dependent pathway signifying the health benefits of this agricultural waste and a potential for waste recycling while limiting environmental pollution.