{"title":"A robust confidence-accuracy dissociation via criterion attraction.","authors":"Dobromir Rahnev","doi":"10.1093/nc/niab039","DOIUrl":null,"url":null,"abstract":"<p><p>Many studies have shown that confidence and accuracy can be dissociated in a variety of tasks. However, most of these dissociations involve small effect sizes, occur only in a subset of participants, and include a reaction time (RT) confound. Here, I develop a new method for inducing confidence-accuracy dissociations that overcomes these limitations. The method uses an external noise manipulation and relies on the phenomenon of criterion attraction where criteria for different tasks become attracted to each other. Subjects judged the identity of stimuli generated with either low or high external noise. The results showed that the two conditions were matched on accuracy and RT but produced a large difference in confidence (effect appeared for 25 of 26 participants, effect size: Cohen's <i>d</i> = 1.9). Computational modeling confirmed that these results are consistent with a mechanism of criterion attraction. These findings establish a new method for creating conditions with large differences in confidence without differences in accuracy or RT. Unlike many previous studies, however, the current method does not lead to differences in subjective experience and instead produces robust confidence-accuracy dissociations by exploiting limitations in post-perceptual, cognitive processes.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"niab039"},"PeriodicalIF":4.3000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nc/niab039","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Many studies have shown that confidence and accuracy can be dissociated in a variety of tasks. However, most of these dissociations involve small effect sizes, occur only in a subset of participants, and include a reaction time (RT) confound. Here, I develop a new method for inducing confidence-accuracy dissociations that overcomes these limitations. The method uses an external noise manipulation and relies on the phenomenon of criterion attraction where criteria for different tasks become attracted to each other. Subjects judged the identity of stimuli generated with either low or high external noise. The results showed that the two conditions were matched on accuracy and RT but produced a large difference in confidence (effect appeared for 25 of 26 participants, effect size: Cohen's d = 1.9). Computational modeling confirmed that these results are consistent with a mechanism of criterion attraction. These findings establish a new method for creating conditions with large differences in confidence without differences in accuracy or RT. Unlike many previous studies, however, the current method does not lead to differences in subjective experience and instead produces robust confidence-accuracy dissociations by exploiting limitations in post-perceptual, cognitive processes.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico