Uncertainty analysis for stride-time-derived modelling of lower limb stiffness: applying Taylor series expansion for error propagation on Monte-Carlo simulated data.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-11-01 Epub Date: 2022-02-14 DOI:10.1080/14763141.2021.2022185
George Vagenas
{"title":"Uncertainty analysis for stride-time-derived modelling of lower limb stiffness: applying Taylor series expansion for error propagation on Monte-Carlo simulated data.","authors":"George Vagenas","doi":"10.1080/14763141.2021.2022185","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge of uncertainty is valuable mainly in correctly appraising measured effects. In lower limb stiffness, which affects injury risk and athletic performance, uncertainty is often related to vertical (K<sub>vert</sub>) and leg (K<sub>leg</sub>) stiffness. Imprecisions in measurements of body mass (M), leg length (L), contact (t<sub>c</sub>) and flight (t<sub>f</sub>) time propagate through the calculations, augment stiffness uncertainty and inflate relevant effects. This study estimated the limits of this uncertainty as probable (E<sub>prob</sub>) and upper bound (E<sub>upper</sub>) errors by applying Taylor series expansion on Monte-Carlo simulated data. E<sub>prob</sub> and E<sub>upper</sub> were 1285 ± 221 N/m (3.9 ± 0.2%) and 1441 ± 248 N/m (4.4 ± 0.3%) in K<sub>vert</sub>, and 222 ± 61 N/m (2.1 ± 0.1%) and 375 ± 109 N/m (3.6 ± 0.3%) in K<sub>leg</sub>, respectively. To avoid the complexities of full Taylor series expansion, E<sub>prob</sub> was predicted (R<sup>2</sup> ≈ 1) more simply as 0.89E<sub>upper</sub> in K<sub>vert</sub> and 11 + 0.56E<sub>upper</sub> in K<sub>leg</sub>. These uncertainties reflect mostly errors in t<sub>c</sub> and t<sub>f</sub>, and uncertainty in F<sub>max</sub>, at kinematic sampling of 300 Hz and running at 4-5 m/s. With slower sampling or faster running these uncertainties rise, and their impact on similar lower limb stiffness effects could be substantial. Applying Taylor series expansion for error propagation on Monte-Carlo simulated data is valid for uncertainty analysis in any multivariable functional relationship.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"2312-2329"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14763141.2021.2022185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of uncertainty is valuable mainly in correctly appraising measured effects. In lower limb stiffness, which affects injury risk and athletic performance, uncertainty is often related to vertical (Kvert) and leg (Kleg) stiffness. Imprecisions in measurements of body mass (M), leg length (L), contact (tc) and flight (tf) time propagate through the calculations, augment stiffness uncertainty and inflate relevant effects. This study estimated the limits of this uncertainty as probable (Eprob) and upper bound (Eupper) errors by applying Taylor series expansion on Monte-Carlo simulated data. Eprob and Eupper were 1285 ± 221 N/m (3.9 ± 0.2%) and 1441 ± 248 N/m (4.4 ± 0.3%) in Kvert, and 222 ± 61 N/m (2.1 ± 0.1%) and 375 ± 109 N/m (3.6 ± 0.3%) in Kleg, respectively. To avoid the complexities of full Taylor series expansion, Eprob was predicted (R2 ≈ 1) more simply as 0.89Eupper in Kvert and 11 + 0.56Eupper in Kleg. These uncertainties reflect mostly errors in tc and tf, and uncertainty in Fmax, at kinematic sampling of 300 Hz and running at 4-5 m/s. With slower sampling or faster running these uncertainties rise, and their impact on similar lower limb stiffness effects could be substantial. Applying Taylor series expansion for error propagation on Monte-Carlo simulated data is valid for uncertainty analysis in any multivariable functional relationship.

下肢刚度跨步时间建模的不确定性分析:在蒙特卡洛模拟数据上应用泰勒级数展开进行误差传播。
不确定性知识的价值主要在于正确评估测量效果。在影响受伤风险和运动表现的下肢刚度方面,不确定性通常与垂直刚度(Kvert)和腿部刚度(Kleg)有关。对身体质量(M)、腿长(L)、接触时间(tc)和飞行时间(tf)的测量不精确会通过计算传播,增加刚度的不确定性并扩大相关影响。本研究通过对蒙特卡洛模拟数据进行泰勒级数展开,将这种不确定性的极限估计为可能误差 (Eprob) 和上限误差 (Eupper)。Kvert 的 Eprob 和 Eupper 分别为 1285 ± 221 N/m(3.9 ± 0.2%)和 1441 ± 248 N/m(4.4 ± 0.3%),Kleg 的 Eprob 和 Eupper 分别为 222 ± 61 N/m(2.1 ± 0.1%)和 375 ± 109 N/m(3.6 ± 0.3%)。为了避免全泰勒级数展开的复杂性,Eprob 被更简单地预测为(R2 ≈ 1):Kvert 为 0.89Eupper 和 Kleg 为 11 + 0.56Eupper。这些不确定性主要反映了在运动采样频率为 300 Hz 和运行速度为 4-5 m/s 时 tc 和 tf 的误差以及 Fmax 的不确定性。在采样较慢或运行速度较快的情况下,这些不确定性会上升,对类似的下肢刚度效应的影响可能很大。在蒙特卡洛模拟数据上应用泰勒级数展开进行误差传播对任何多变量函数关系的不确定性分析都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信