{"title":"RIPK1 is a key factor in black carbon-induced cell death.","authors":"Xianyan Xu, Zhaojun Xu, Shiyong Zeng, Yuhui Ouyang","doi":"10.2220/biomedres.43.23","DOIUrl":null,"url":null,"abstract":"<p><p>Air pollution is associated with increased morbidity and mortality and with cell death at a cellular level. However, the exact mechanism of particulate matter-induced cell death remains to be elucidated. The aim of the present in vitro study using human alveolar epithelial cells (A549) was to determine the cell death pathway(s) induced by black carbon (BC) and ozone oxidized-black carbon (O-BC). BC and O-BC induced A549 cell death and the cytotoxic effect was dose-dependent. Cell death was significantly abrogated by inhibitor of receptor protein interacting kinase 1 (RIPK1) but only mildly inhibited by apoptosis inhibitor and RIPK3. BC- and O-BC-treated cells showed RIPK1 and RIPK3 protein overexpression and high phosphorylated levels of these proteins, as well as detectable levels of caspase-8 active form. BC- and O-BC-triggered cell death was also fully rescued in A549 cells that under-expressed RIPK1 with RIPK1 siRNA. Our results indicated that BC and O-BC could induce cell death through a multitude of pathways including apoptotic and necroptotic pathways and that RIPK1 is the upstream signal protein of these cell death pathways, with an important role in the regulation of BC-induced cell death.</p>","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2220/biomedres.43.23","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Air pollution is associated with increased morbidity and mortality and with cell death at a cellular level. However, the exact mechanism of particulate matter-induced cell death remains to be elucidated. The aim of the present in vitro study using human alveolar epithelial cells (A549) was to determine the cell death pathway(s) induced by black carbon (BC) and ozone oxidized-black carbon (O-BC). BC and O-BC induced A549 cell death and the cytotoxic effect was dose-dependent. Cell death was significantly abrogated by inhibitor of receptor protein interacting kinase 1 (RIPK1) but only mildly inhibited by apoptosis inhibitor and RIPK3. BC- and O-BC-treated cells showed RIPK1 and RIPK3 protein overexpression and high phosphorylated levels of these proteins, as well as detectable levels of caspase-8 active form. BC- and O-BC-triggered cell death was also fully rescued in A549 cells that under-expressed RIPK1 with RIPK1 siRNA. Our results indicated that BC and O-BC could induce cell death through a multitude of pathways including apoptotic and necroptotic pathways and that RIPK1 is the upstream signal protein of these cell death pathways, with an important role in the regulation of BC-induced cell death.
期刊介绍:
Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..