{"title":"Convergence Analysis of the Hessian Estimation Evolution Strategy","authors":"Tobias Glasmachers;Oswin Krause","doi":"10.1162/evco_a_00295","DOIUrl":null,"url":null,"abstract":"The class of algorithms called Hessian Estimation Evolution Strategies (HE-ESs) update the covariance matrix of their sampling distribution by directly estimating the curvature of the objective function. The approach is practically efficient, as attested by respectable performance on the BBOB testbed, even on rather irregular functions. In this article, we formally prove two strong guarantees for the (1 + 4)-HE-ES, a minimal elitist member of the family: stability of the covariance matrix update, and as a consequence, linear convergence on all convex quadratic problems at a rate that is independent of the problem instance.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"30 1","pages":"27-50"},"PeriodicalIF":4.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9808224/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The class of algorithms called Hessian Estimation Evolution Strategies (HE-ESs) update the covariance matrix of their sampling distribution by directly estimating the curvature of the objective function. The approach is practically efficient, as attested by respectable performance on the BBOB testbed, even on rather irregular functions. In this article, we formally prove two strong guarantees for the (1 + 4)-HE-ES, a minimal elitist member of the family: stability of the covariance matrix update, and as a consequence, linear convergence on all convex quadratic problems at a rate that is independent of the problem instance.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.