P2Y2 Receptor Mediated Neuronal Regeneration and Angiogenesis to Affect Functional Recovery in Rats with Spinal Cord Injury.

IF 3 4区 医学 Q2 NEUROSCIENCES
Neural Plasticity Pub Date : 2022-02-02 eCollection Date: 2022-01-01 DOI:10.1155/2022/2191011
Ruidong Cheng, Genying Zhu, Chengtao Ni, Rui Wang, Peng Sun, Liang Tian, Li Zhang, Jie Zhang, Xiangming Ye, Benyan Luo
{"title":"P2Y2 Receptor Mediated Neuronal Regeneration and Angiogenesis to Affect Functional Recovery in Rats with Spinal Cord Injury.","authors":"Ruidong Cheng,&nbsp;Genying Zhu,&nbsp;Chengtao Ni,&nbsp;Rui Wang,&nbsp;Peng Sun,&nbsp;Liang Tian,&nbsp;Li Zhang,&nbsp;Jie Zhang,&nbsp;Xiangming Ye,&nbsp;Benyan Luo","doi":"10.1155/2022/2191011","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to investigate the effect of the P2Y2 receptor (P2Y2R) signaling pathway on neuronal regeneration and angiogenesis during spinal cord injury (SCI). The rats were randomly divided into 3 groups, including the sham+dimethyl sulfoxide (DMSO), SCI+DMSO, and SCI+P2Y2R groups. The SCI animal models were constructed. A locomotor rating scale was used for behavioral assessments. The apoptosis of spinal cord tissues was detected by TUNEL staining. The expression levels of P2Y2R, GFAP, nestin, Tuj1, and CD34 were detected by immunofluorescence staining, and the expression levels of TNF-<i>α</i>, IL-1<i>β</i>, and IL-6 were detected by enzyme-linked immunosorbent assay. The locomotor score in the model group was significantly lower than the sham group. The expression of P2Y2R was increased after SCI. The expression levels of TNF-<i>α</i>, IL-1<i>β</i>, and IL-6 were increased remarkably in the SCI model group compared with the sham group. The P2Y2R inhibitor relieved neuronal inflammation after SCI. Compared with the sham group, the apoptotic rate of spinal cord tissue cells in the model group was significantly increased. The P2Y2R inhibitor reduced the apoptosis of the spinal cord tissue. The expressions of CD34, Tuj1, and nestin in the model group were decreased, while the expressions of GFAP and P2Y2R were increased. The P2Y2R inhibitor reversed their expression levels. The P2Y2R inhibitor could alleviate SCI by relieving the neuronal inflammation, inhibiting the spinal cord tissue apoptosis, and promoting neuronal differentiation and vascular proliferation after SCI. P2Y2R may serve as a target for the treatment of SCI.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828345/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/2191011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

The aim of this study was to investigate the effect of the P2Y2 receptor (P2Y2R) signaling pathway on neuronal regeneration and angiogenesis during spinal cord injury (SCI). The rats were randomly divided into 3 groups, including the sham+dimethyl sulfoxide (DMSO), SCI+DMSO, and SCI+P2Y2R groups. The SCI animal models were constructed. A locomotor rating scale was used for behavioral assessments. The apoptosis of spinal cord tissues was detected by TUNEL staining. The expression levels of P2Y2R, GFAP, nestin, Tuj1, and CD34 were detected by immunofluorescence staining, and the expression levels of TNF-α, IL-1β, and IL-6 were detected by enzyme-linked immunosorbent assay. The locomotor score in the model group was significantly lower than the sham group. The expression of P2Y2R was increased after SCI. The expression levels of TNF-α, IL-1β, and IL-6 were increased remarkably in the SCI model group compared with the sham group. The P2Y2R inhibitor relieved neuronal inflammation after SCI. Compared with the sham group, the apoptotic rate of spinal cord tissue cells in the model group was significantly increased. The P2Y2R inhibitor reduced the apoptosis of the spinal cord tissue. The expressions of CD34, Tuj1, and nestin in the model group were decreased, while the expressions of GFAP and P2Y2R were increased. The P2Y2R inhibitor reversed their expression levels. The P2Y2R inhibitor could alleviate SCI by relieving the neuronal inflammation, inhibiting the spinal cord tissue apoptosis, and promoting neuronal differentiation and vascular proliferation after SCI. P2Y2R may serve as a target for the treatment of SCI.

Abstract Image

Abstract Image

Abstract Image

P2Y2受体介导的神经元再生和血管生成影响脊髓损伤大鼠功能恢复
本研究旨在探讨P2Y2受体(P2Y2R)信号通路对脊髓损伤(SCI)时神经元再生和血管生成的影响。将大鼠随机分为假药+二甲基亚砜(DMSO)组、SCI+DMSO组和SCI+P2Y2R组。建立脊髓损伤动物模型。运动评定量表用于行为评估。TUNEL染色检测大鼠脊髓组织凋亡情况。免疫荧光法检测P2Y2R、GFAP、nestin、Tuj1、CD34的表达水平,酶联免疫吸附法检测TNF-α、IL-1β、IL-6的表达水平。模型组大鼠运动评分显著低于假手术组。脊髓损伤后P2Y2R表达增加。与假手术组比较,SCI模型组大鼠血清TNF-α、IL-1β、IL-6表达水平明显升高。P2Y2R抑制剂可缓解脊髓损伤后的神经元炎症。与假手术组比较,模型组大鼠脊髓组织细胞凋亡率明显升高。P2Y2R抑制剂可减少脊髓组织的凋亡。模型组CD34、Tuj1、nestin表达降低,GFAP、P2Y2R表达升高。P2Y2R抑制剂逆转了它们的表达水平。P2Y2R抑制剂可通过减轻脊髓损伤后神经元炎症、抑制脊髓组织凋亡、促进神经元分化和血管增殖来减轻脊髓损伤。P2Y2R可能作为治疗脊髓损伤的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信