Bo-Young Shin, Su-Hyeon Lee, Yuna Kim, Jaekyeung An, Tae-Yoon Park, Sang-Kyou Lee
{"title":"Interactomic inhibition of Eomes in the nucleus alleviates EAE via blocking the conversion of Th17 cells into non-classic Th1 cells.","authors":"Bo-Young Shin, Su-Hyeon Lee, Yuna Kim, Jaekyeung An, Tae-Yoon Park, Sang-Kyou Lee","doi":"10.1080/25785826.2022.2031812","DOIUrl":null,"url":null,"abstract":"<p><p>Th17 cells are implicated in the pathogenesis of several autoimmune diseases. During the inflammation, Th17 cells exposed to IL-12 can shift towards the Th1 phenotype. These shifted cells are defined as 'non-classic Th1 cells'. Th17-derived non-classic Th1 cells play a critical role in late-onset chronic inflammatory diseases and are more pathogenic than the unshifted Th17 cells. Eomes is a transcription factor highly expressed in non-classic Th1 cells. To study the functional role of Eomes without genetic alteration, novel recombinant protein, ntEomes-TMD, was generated by fusing TMD of Eomes and Hph-1-PTD that facilitate intracellular delivery of its cargo molecule. ntEomes-TMD was delivered into the nucleus of the cells without influencing the T cell activation and cytotoxicity. ntEomes-TMD specifically inhibited the Eomes- and ROR-γt-mediated transcription and suppressed the Th1 and Th17 differentiation. Interestingly, ntEomes-TMD blocked the generation of non-classic Th1 cells from Th17 cells, leading to the inhibition of IFN-γ and GM-CSF secretion. In EAE, ntEomes-TMD alleviated the symptoms of EAE, and the combination treatment using ntEomes-TMD and anti-IL-17 mAb together showed better therapeutic efficacy than anti-IL-17 mAb treatment. The results suggest that ntEomes-TMD can be a new therapeutic reagent for treating chronic inflammatory diseases associated with non-classic Th1 cells.</p>","PeriodicalId":37286,"journal":{"name":"Immunological Medicine","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25785826.2022.2031812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Th17 cells are implicated in the pathogenesis of several autoimmune diseases. During the inflammation, Th17 cells exposed to IL-12 can shift towards the Th1 phenotype. These shifted cells are defined as 'non-classic Th1 cells'. Th17-derived non-classic Th1 cells play a critical role in late-onset chronic inflammatory diseases and are more pathogenic than the unshifted Th17 cells. Eomes is a transcription factor highly expressed in non-classic Th1 cells. To study the functional role of Eomes without genetic alteration, novel recombinant protein, ntEomes-TMD, was generated by fusing TMD of Eomes and Hph-1-PTD that facilitate intracellular delivery of its cargo molecule. ntEomes-TMD was delivered into the nucleus of the cells without influencing the T cell activation and cytotoxicity. ntEomes-TMD specifically inhibited the Eomes- and ROR-γt-mediated transcription and suppressed the Th1 and Th17 differentiation. Interestingly, ntEomes-TMD blocked the generation of non-classic Th1 cells from Th17 cells, leading to the inhibition of IFN-γ and GM-CSF secretion. In EAE, ntEomes-TMD alleviated the symptoms of EAE, and the combination treatment using ntEomes-TMD and anti-IL-17 mAb together showed better therapeutic efficacy than anti-IL-17 mAb treatment. The results suggest that ntEomes-TMD can be a new therapeutic reagent for treating chronic inflammatory diseases associated with non-classic Th1 cells.