A-769662 stimulates the differentiation of bone marrow-derived mesenchymal stem cells into osteoblasts via AMP-activated protein kinase-dependent mechanism.
{"title":"A-769662 stimulates the differentiation of bone marrow-derived mesenchymal stem cells into osteoblasts via AMP-activated protein kinase-dependent mechanism.","authors":"Basem M Abdallah, Abdullah M Alzahrani","doi":"10.32725/jab.2021.016","DOIUrl":null,"url":null,"abstract":"<p><p>AMP-activated protein kinase (AMPK) signaling shows an important role in energy metabolism and has recently been involved in osteogenic and adipogenic differentiation. In this study we aimed to investigate the role of AMPK activator, A-769662, in regulating the differentiation of mesenchymal stem cells derived from bone marrow (BMSCs) into osteoblastic and adipocytic cell lineage. The effect of A-769662 on osteogenesis was assessed by quantitative alkaline phosphatase (ALP) activity, matrix mineralization stained with Alizarin red, and gene expression analysis by quantitative polymerase chain reaction (qPCR). Adipogenesis was determined by Oil Red O staining for fat droplets and qPCR analysis of adipogenic markers. A-769662 activated the phosphorylation of AMPKα1 during the osteogenesis of mBMSCs as revealed by western blot analysis. A-769662 promoted the early stage of the commitment of mouse (m) BMSCs differentiation into osteoblasts, while inhibiting their differentiation into adipocytes in a dose-dependent manner. The effects of A-769662 on stimulating osteogenesis and inhibiting adipogenesis of mBMSCs were significantly eliminated in the presence of either AMPKα1 siRNA or Compound C, an inhibitor of AMPK pathway. In conclusion, we identified A-769662 as a new compound that promotes the commitment of BMSCs into osteoblasts versus adipocytes via AMPK-dependent mechanism. Thus our data show A-769662 as a potential osteo-anabolic drug for treatment of osteoporosis.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":" ","pages":"159-169"},"PeriodicalIF":2.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2021.016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
AMP-activated protein kinase (AMPK) signaling shows an important role in energy metabolism and has recently been involved in osteogenic and adipogenic differentiation. In this study we aimed to investigate the role of AMPK activator, A-769662, in regulating the differentiation of mesenchymal stem cells derived from bone marrow (BMSCs) into osteoblastic and adipocytic cell lineage. The effect of A-769662 on osteogenesis was assessed by quantitative alkaline phosphatase (ALP) activity, matrix mineralization stained with Alizarin red, and gene expression analysis by quantitative polymerase chain reaction (qPCR). Adipogenesis was determined by Oil Red O staining for fat droplets and qPCR analysis of adipogenic markers. A-769662 activated the phosphorylation of AMPKα1 during the osteogenesis of mBMSCs as revealed by western blot analysis. A-769662 promoted the early stage of the commitment of mouse (m) BMSCs differentiation into osteoblasts, while inhibiting their differentiation into adipocytes in a dose-dependent manner. The effects of A-769662 on stimulating osteogenesis and inhibiting adipogenesis of mBMSCs were significantly eliminated in the presence of either AMPKα1 siRNA or Compound C, an inhibitor of AMPK pathway. In conclusion, we identified A-769662 as a new compound that promotes the commitment of BMSCs into osteoblasts versus adipocytes via AMPK-dependent mechanism. Thus our data show A-769662 as a potential osteo-anabolic drug for treatment of osteoporosis.
期刊介绍:
Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines.
Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.