Improving Prediction of Long-Term Care Utilization Through Patient-Reported Measures: Cross-Sectional Analysis of High-Need U.S. Veterans Affairs Patients.

Medical care research and review : MCRR Pub Date : 2022-10-01 Epub Date: 2021-12-14 DOI:10.1177/10775587211062403
Josephine C Jacobs, Matthew L Maciejewski, Todd H Wagner, Courtney H Van Houtven, Jeanie Lo, Liberty Greene, Donna M Zulman
{"title":"Improving Prediction of Long-Term Care Utilization Through Patient-Reported Measures: Cross-Sectional Analysis of High-Need U.S. Veterans Affairs Patients.","authors":"Josephine C Jacobs,&nbsp;Matthew L Maciejewski,&nbsp;Todd H Wagner,&nbsp;Courtney H Van Houtven,&nbsp;Jeanie Lo,&nbsp;Liberty Greene,&nbsp;Donna M Zulman","doi":"10.1177/10775587211062403","DOIUrl":null,"url":null,"abstract":"<p><p>This article examines the relative merit of augmenting an electronic health record (EHR)-derived predictive model of institutional long-term care (LTC) use with patient-reported measures not commonly found in EHRs. We used survey and administrative data from 3,478 high-risk Veterans aged ≥65 in the U.S. Department of Veterans Affairs, comparing a model based on a Veterans Health Administration (VA) geriatrics dashboard, a model with additional EHR-derived variables, and a model that added survey-based measures (i.e., activities of daily living [ADL] limitations, social support, and finances). Model performance was assessed via Akaike information criteria, C-statistics, sensitivity, and specificity. Age, a dementia diagnosis, Nosos risk score, social support, and ADL limitations were consistent predictors of institutional LTC use. Survey-based variables significantly improved model performance. Although demographic and clinical characteristics found in many EHRs are predictive of institutional LTC, patient-reported function and partnership status improve identification of patients who may benefit from home- and community-based services.</p>","PeriodicalId":169610,"journal":{"name":"Medical care research and review : MCRR","volume":" ","pages":"676-686"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical care research and review : MCRR","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10775587211062403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article examines the relative merit of augmenting an electronic health record (EHR)-derived predictive model of institutional long-term care (LTC) use with patient-reported measures not commonly found in EHRs. We used survey and administrative data from 3,478 high-risk Veterans aged ≥65 in the U.S. Department of Veterans Affairs, comparing a model based on a Veterans Health Administration (VA) geriatrics dashboard, a model with additional EHR-derived variables, and a model that added survey-based measures (i.e., activities of daily living [ADL] limitations, social support, and finances). Model performance was assessed via Akaike information criteria, C-statistics, sensitivity, and specificity. Age, a dementia diagnosis, Nosos risk score, social support, and ADL limitations were consistent predictors of institutional LTC use. Survey-based variables significantly improved model performance. Although demographic and clinical characteristics found in many EHRs are predictive of institutional LTC, patient-reported function and partnership status improve identification of patients who may benefit from home- and community-based services.

通过患者报告的措施改善长期护理利用的预测:高需求美国退伍军人事务患者的横断面分析。
本文探讨了将电子健康记录(EHR)衍生的机构长期护理(LTC)使用预测模型与患者报告的措施相结合的相对优点,这些措施在EHR中并不常见。我们使用了美国退伍军人事务部3,478名年龄≥65岁的高风险退伍军人的调查和管理数据,比较了基于退伍军人健康管理局(VA)老年病学仪表板的模型、附加ehr衍生变量的模型和添加基于调查的测量(即日常生活活动[ADL]限制、社会支持和财务)的模型。通过赤池信息标准、c统计量、敏感性和特异性评估模型性能。年龄、痴呆诊断、Nosos风险评分、社会支持和ADL限制是机构LTC使用的一致预测因子。基于调查的变量显著提高了模型性能。虽然在许多电子病历中发现的人口统计学和临床特征可以预测机构LTC,但患者报告的功能和伙伴关系状况可以提高对可能受益于家庭和社区服务的患者的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信