Adrián Moreno-Villanueva, José Pino-Ortega, Markel Rico-González
{"title":"Validity and reliability of linear position transducers and linear velocity transducers: a systematic review.","authors":"Adrián Moreno-Villanueva, José Pino-Ortega, Markel Rico-González","doi":"10.1080/14763141.2021.1988136","DOIUrl":null,"url":null,"abstract":"<p><p>This systematic review aimed to summarise and analyse the evidence on the reliability and validity of linear tranducers (LTs) in exercises of different nature and different modes of execution. This systematic review was carried out under PRISMA guidelines, and was carried out using three databases (PubMed, Web of Sciences, and Scopus). Of the 351 initially found, 21 were included in the qualitative synthesis. The results reflected that linear position transducers (LPTs) were valid and reliable in monitoring movement velocity in non-plyometric exercises. However, precision and reliability were lower in execution protocols without isometric phase and in the execution of exercises in multiple planes of movement, with greater measurement errors at higher sampling frequencies. On the other hand, linear velocity transducers (LVTs) proved to be valid and reliable in measuring velocity during plyometric and non-plyometric exercises performed on the Smith machine, with less variation in measurement in the latter. Finally, the use of peak values is recommended, since they are less dependent on the technological errors of LTs. Therefore, the performance of non-plyometric exercises, carried out in the Smith machine and with an isometric phase in the execution of the movement, will help to minimise the technological error of the LTs.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1340-1369"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1988136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This systematic review aimed to summarise and analyse the evidence on the reliability and validity of linear tranducers (LTs) in exercises of different nature and different modes of execution. This systematic review was carried out under PRISMA guidelines, and was carried out using three databases (PubMed, Web of Sciences, and Scopus). Of the 351 initially found, 21 were included in the qualitative synthesis. The results reflected that linear position transducers (LPTs) were valid and reliable in monitoring movement velocity in non-plyometric exercises. However, precision and reliability were lower in execution protocols without isometric phase and in the execution of exercises in multiple planes of movement, with greater measurement errors at higher sampling frequencies. On the other hand, linear velocity transducers (LVTs) proved to be valid and reliable in measuring velocity during plyometric and non-plyometric exercises performed on the Smith machine, with less variation in measurement in the latter. Finally, the use of peak values is recommended, since they are less dependent on the technological errors of LTs. Therefore, the performance of non-plyometric exercises, carried out in the Smith machine and with an isometric phase in the execution of the movement, will help to minimise the technological error of the LTs.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.